Proteasomes are composed of 20S core particles (CPs) of - and -type subunits that associate with regulatory particle AAA ATPases such as the proteasome-activating nucleotidase (PAN) complexes of archaea. In this study, the roles and additional sites of post-translational modification of proteasomes were investigated using the archaeon Haloferax volcanii as a model. Indicative of phosphorylation, phosphatase-sensitive isoforms of and were detected by 2-DE immunoblot. To map these and other potential sites of post-translational modification, proteasomes were purified and analyzed by tandem mass spectrometry (MS/MS). Using this approach, several phosphosites were mapped including Thr147, 2 Thr13/Ser14 and PAN-A Ser340. Multiple methylation sites were also mapped to , thus, revealing a new type of proteasomal modification. Probing the biological role of and PAN-A phosphorylation by site-directed mutagenesis revealed dominant negative phenotypes for cell viability and/or pigmentation for variants including Thr147Ala, Thr158Ala and Ser58Ala. An H. volcanii Rio1p Ser/Thr kinase homolog was purified and shown to catalyze autophosphorylation and phosphotransfer to . The variants in Thr and Ser residues that displayed dominant negative phenotypes were significantly reduced in their ability to accept phosphoryl groups from Rio1p, thus, providing an important link between cell physiology and proteasomal phosphorylation. 1. Introduction Proteasomes are multicatalytic proteases found in all three domains of life and are essential for growth in many organisms, including haloarchaea and eukaryotes [1–5]. Accessory proteins, such as 19S cap and proteasome activating nucleotidase (PAN) complexes, and protein-modification pathways such as ubiquitination are important in regulating protein degradation by proteasomes. Proteasomal proteins are also subject to co- and posttranslational modification (PTM) including N-terminal acetylation [6–9], phosphorylation [10–27], S-glutathionation [28], N-myristoylation [29], O-linked glycosylation [30], and processing of N-terminal propeptides including exposure of the Thr active site residues of 20S core particles (CPs) [31]. Despite decades of study, the mechanisms and biological significance of many of the posttranslational modifications of proteasomes are poorly understood. In particular, our knowledge of the phosphorylation of proteasomes remains limited. Polo-kinase, casein kinase II and calcium/calmodulin-dependent protein kinase II are known to mediate the phosphorylation of 26S proteasomes in vitro [11, 13, 14, 16–19, 27, 32,
References
[1]
D. H. Lee, K. Tanaka, T. Tamura, C. H. Chung, and A. Ichihara, “PRS3 encoding an essential subunit of yeast proteasomes homologous to mammalian proteasome subunit C5,” Biochemical and Biophysical Research Communications, vol. 182, no. 2, pp. 452–460, 1992.
[2]
D. H. Lee, T. Tamura, C. H. Chung, K. Tanaka, and A. Ichihara, “Molecular cloning of the yeast proteasome PRS2 gene identical to the suppressor gene scl1+,” Biochemistry International, vol. 23, no. 4, pp. 689–696, 1991.
[3]
E. Georgatsou, T. Georgakopoulos, and G. Thireos, “Molecular cloning of an essential yeast gene encoding a proteasomal subunit,” FEBS Letters, vol. 299, no. 1, pp. 39–43, 1992.
[4]
T. Fujiwara, K. Tanaka, E. Orino et al., “Proteasomes are essential for yeast proliferation. cDNA cloning and gene disruption of two major subunits,” Journal of Biological Chemistry, vol. 265, no. 27, pp. 16604–16613, 1990.
[5]
G. Zhou, D. Kowalczyk, M. A. Humbard, S. Rohatgi, and J. A. Maupin-Furlow, “Proteasomal components required for cell growth and stress responses in the haloarchaeon Haloferax volcanii,” Journal of Bacteriology, vol. 190, no. 24, pp. 8096–8105, 2008.
[6]
C. S. Arendt and M. Hochstrasser, “Eukaryotic 20S proteasome catalytic subunit propeptides prevent active site inactivation by N-terminal acetylation and promote particle assembly,” EMBO Journal, vol. 18, no. 13, pp. 3575–3585, 1999.
[7]
Y. Kimura, Y. Saeki, H. Yokosawa, B. Polevoda, F. Sherman, and H. Hirano, “N-terminal modifications of the 19S regulatory particle subunits of the yeast proteasome,” Archives of Biochemistry and Biophysics, vol. 409, no. 2, pp. 341–348, 2003.
[8]
Y. Kimura, M. Takaoka, S. Tanaka et al., “Nα-acetylation and proteolytic activity of the yeast 20 S proteasome,” Journal of Biological Chemistry, vol. 275, no. 7, pp. 4635–4639, 2000.
[9]
F. Tokunaga, R. Aruga, S. Iwanaga et al., “The NH2-terminal residues of rat liver proteasome (multicatalytic proteinase complex) subunits, C2, C3 and C8, are Nα-acetylated,” FEBS Letters, vol. 263, no. 2, pp. 373–375, 1990.
[10]
F. Bardag-Gorce, R. Venkatesh, J. Li, B. A. French, and S. W. French, “Hyperphosphorylation of rat liver proteasome subunits: the effects of ethanol and okadaic acid are compared,” Life Sciences, vol. 75, no. 5, pp. 585–597, 2004.
[11]
S. Bose, F. L. L. Stratford, K. I. Broadfoot, G. G. F. Mason, and A. J. Rivett, “Phosphorylation of 20S proteasome alpha subunit C8 (α7) stabilizes the 26S proteasome and plays a role in the regulation of proteasome complexes by γ-interferon,” Biochemical Journal, vol. 378, no. 1, pp. 177–184, 2004.
[12]
S. Bose, P. Brooks, G. G. F. Mason, and A. J. Rivett, “γ-interferon decreases the level of 26 S proteasomes and changes the pattern of phosphorylation,” Biochemical Journal, vol. 353, no. 2, pp. 291–297, 2001.
[13]
S. Bose, G. G. F. Mason, and A. J. Rivett, “Phosphorylation of proteasomes in mammalian cells,” Molecular Biology Reports, vol. 26, no. 1-2, pp. 11–14, 1999.
[14]
J. G. Casta?o, E. Mahillo, P. Arizti, and J. Arribas, “Phosphorylation of C8 and C9 subunits of the multicatalytic proteinase by casein kinase II and identification of the C8 phosphorylation sites by direct mutagenesis,” Biochemistry, vol. 35, no. 12, pp. 3782–3789, 1996.
[15]
S. Claverol, O. Burlet-Schiltz, E. Girbal-Neuhauser, J. E. Gairin, and B. Monsarrat, “Mapping and structural dissection of human 20 S proteasome using proteomic approaches,” Molecular and Cellular Proteomics, vol. 1, no. 8, pp. 567–578, 2002.
[16]
P. Fernández Murray, P. S. Pardo, A. M. Zelada, and S. Passeron, “In vivo and in vitro phosphorylation of Candida albicans 20S proteasome,” Archives of Biochemistry and Biophysics, vol. 404, no. 1, pp. 116–125, 2002.
[17]
R. Horiguchi, M. Yoshikuni, M. Tokumoto, Y. Nagahama, and T. Tokumoto, “Identification of a protein kinase which phosphorylates a subunit of the 26S proteasome and changes in its activity during meiotic cell cycle in goldfish oocytes,” Cellular Signalling, vol. 17, no. 2, pp. 205–215, 2005.
[18]
Y. Iwafune, H. Kawasaki, and H. Hirano, “Identification of three phosphorylation sites in the α7 subunit of the yeast 20S proteasome in vivo using mass spectrometry,” Archives of Biochemistry and Biophysics, vol. 431, no. 1, pp. 9–15, 2004.
[19]
G. G. F. Mason, K. B. Hendil, and A. J. Rivett, “Phosphorylation of proteasomes in mammalian cells Identification of two phosphorylated subunits and the effect of phosphorylation on activity,” European Journal of Biochemistry, vol. 238, no. 2, pp. 453–462, 1996.
[20]
G. G. F. Mason, R. Z. Murray, D. Pappin, and A. J. Rivett, “Phosphorylation of ATPase subunits of the 26S proteasome,” FEBS Letters, vol. 430, no. 3, pp. 269–274, 1998.
[21]
P. S. Pardo, P. F. Murray, K. Walz, L. Franco, and S. Passeron, “In vivo and in vitro phosphorylation of the α7/PRS1 subunit of Saccharomyces cerevisiae 20?S proteasome: in vitro phosphorylation by protein kinase CK2 is absolutely dependent on polylysine,” Archives of Biochemistry and Biophysics, vol. 349, no. 2, pp. 397–401, 1998.
[22]
A. J. Rivett, S. Bose, P. Brooks, and K. I. Broadfoot, “Regulation of proteasome complexes by γ-interferon and phosphorylation,” Biochimie, vol. 83, no. 3-4, pp. 363–366, 2001.
[23]
K. Satoh, H. Sasajima, K.-I. Nyoumura, H. Yokosawa, and H. Sawada, “Assembly of the 26S proteasome is regulated by phosphorylation of the p45/Rpt6 ATPase subunit,” Biochemistry, vol. 40, no. 2, pp. 314–319, 2001.
[24]
M. Tokumoto, R. Horiguchi, Y. Nagahama, K. Ishikawa, and T. Tokumoto, “Two proteins, a goldfish 20S proteasome subunit and the protein interacting with 26S proteasome, change in the meiotic cell cycle,” European Journal of Biochemistry, vol. 267, no. 1, pp. 97–103, 2000.
[25]
M. Umeda, Y. Manabe, and H. Uchimiya, “Phosphorylation of the C2 subunit of the proteasome in rice (Oryza sativa L.),” FEBS Letters, vol. 403, no. 3, pp. 313–317, 1997.
[26]
Y. Wakata, M. Tokumoto, R. Horiguchi, K. Ishikawa, Y. Nagahama, and T. Tokumoto, “Identification of -type subunits of the Xenopus 20S proteasome and analysis of their changes during the meiotic cell cycle,” FEBS Letters, vol. 5, article 18, 2004.
[27]
F. Zhang, Y. Hu, P. Huang, C. A. Toleman, A. J. Paterson, and J. E. Kudlow, “Proteasome function is regulated by cyclic AMP-dependent protein kinase through phosphorylation of Rpt6,” Journal of Biological Chemistry, vol. 282, no. 31, pp. 22460–22471, 2007.
[28]
M. Demasi, G. M. Silva, and L. E. S. Netto, “20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated,” Journal of Biological Chemistry, vol. 278, no. 1, pp. 679–685, 2003.
[29]
S. C. Lee and B. D. Shaw, “A novel interaction between N-myristoylation and the 26S proteasome during cell morphogenesis,” Molecular Microbiology, vol. 63, no. 4, pp. 1039–1053, 2007.
[30]
N. E. Zachara and G. W. Hart, “O-GlcNAc modification: a nutritional sensor that modulates proteasome function,” Trends in Cell Biology, vol. 14, no. 5, pp. 218–221, 2004.
[31]
E. Seemuller, A. Lupas, D. Stock, J. Lowe, R. Huber, and W. Baumeister, “Proteasome from Thermoplasma acidophilum: a threonine protease,” Science, vol. 268, no. 5210, pp. 579–582, 1995.
[32]
Y. Feng, D. L. Longo, and D. K. Ferris, “Polo-like kinase interacts with proteasomes and regulates their activity,” Cell Growth and Differentiation, vol. 12, no. 1, pp. 29–37, 2001.
[33]
S. N. Djakovic, L. A. Schwarz, B. Barylko, G. N. DeMartino, and G. N. Patrick, “Regulation of the proteasome by neuronal activity and calcium/calmodulin-dependent protein kinase II,” Journal of Biological Chemistry, vol. 284, no. 39, pp. 26655–26665, 2009.
[34]
H. L. Wilson, H. C. Aldrich, and J. Maupin-Furlow, “Halophilic 20S proteasomes of the archaeon Haloferax volcanii: purification, characterization, and gene sequence analysis,” Journal of Bacteriology, vol. 181, no. 18, pp. 5814–5824, 1999.
[35]
M. A. Humbard, S. M. Stevens Jr., and J. A. Maupin-Furlow, “Post-translational modication of the 20S proteasomal proteins of the archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 188, no. 21, pp. 7521–7530, 2006.
[36]
S. J. Kaczowka and J. A. Maupin-Furlow, “Subunit topology of two 20S proteasomes from Haloferax volcanii,” Journal of Bacteriology, vol. 185, no. 1, pp. 165–174, 2003.
[37]
C. J. Reuter, S. J. Kaczowka, and J. A. Maupin-Furlow, “Differential regulation of the PanA and PanB proteasome-activating nucleotidase and 20S proteasomal proteins of the haloarchaeon Haloferax volcanii,” Journal of Bacteriology, vol. 186, no. 22, pp. 7763–7772, 2004.
[38]
M. A. Humbard, G. Zhou, and J. A. Maupin-Furlow, “The N-terminal penultimate residue of 20S proteasome α1 influences its Nα acetylation and protein levels as well as growth rate and stress responses of Haloferax volcanii,” Journal of Bacteriology, vol. 191, no. 12, pp. 3794–3803, 2009.
[39]
P. A. Kirkland, J. Busby, S. Stevens Jr., and J. A. Maupin-Furlow, “Trizol-based method for sample preparation and isoelectric focusing of halophilic proteins,” Analytical Biochemistry, vol. 351, no. 2, pp. 254–259, 2006.
[40]
A. J. Barrett, “Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates,” Biochemical Journal, vol. 187, no. 3, pp. 909–912, 1980.
[41]
A. L. Hartman, C. Norais, J. H. Badger, et al., “The complete genome sequence of Haloferax volcanii DS2, a model archaeon,” PLoS One, vol. 5, article e9605, 2010.
[42]
N. Blom, S. Gammeltoft, and S. Brunak, “Sequence and structure-based prediction of eukaryotic protein phosphorylation sites,” Journal of Molecular Biology, vol. 294, no. 5, pp. 1351–1362, 1999.
[43]
C. Fischer, C. Geourjon, C. Bourson, and J. Deutscher, “Cloning and characterization of the Bacillus subtilis prkA gene encoding a novel serine protein kinase,” Gene, vol. 168, no. 1, pp. 55–60, 1996.
[44]
N. LaRonde-LeBlanc, T. Guszczynski, T. Copeland, and A. Wlodawer, “Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide-metal ion complexes,” FEBS Journal, vol. 272, no. 11, pp. 2800–2810, 2005.
[45]
N. LaRonde-LeBlanc and A. Wlodawer, “A family portrait of the RIO kinases,” Journal of Biological Chemistry, vol. 280, no. 45, pp. 37297–37300, 2005.
[46]
M. A. Gil, K. E. Sherwood, and J. A. Maupin-Furlow, “Transcriptional linkage of Haloferax volcanii proteasomal genes with non-proteasomal gene neighbours including RNase P, MOSC domain and SAM-methyltransferase homologues,” Microbiology, vol. 153, no. 9, pp. 3009–3022, 2007.
[47]
B. Wang, S. Yang, L. Zhang, and Z.-G. He, “Archaeal eukaryote-like serine/threonine protein kinase interacts with and phosphorylates a forkhead-associated-domain-containing protein,” Journal of Bacteriology, vol. 192, no. 7, pp. 1956–1964, 2010.
[48]
C. López-Otín and T. Hunter, “The regulatory crosstalk between kinases and proteases in cancer,” Nature Reviews Cancer, vol. 10, no. 4, pp. 278–292, 2010.
[49]
R. Y. Hampton and R. M. Garza, “Protein quality control as a strategy for cellular regulation: lessons from ubiqu it in-mediated regulation of the sterol pathway,” Chemical Reviews, vol. 109, no. 4, pp. 1561–1574, 2009.
[50]
F. Silva, E. Navarro, A. Pe?aranda, L. Murcia-Flores, S. Torres-Martínez, and V. Garre, “A RING-finger protein regulates carotenogenesis via proteolysis-independent ubiquitylation of a white collar-1-like activator,” Molecular Microbiology, vol. 70, no. 4, pp. 1026–1036, 2008.
[51]
A. Brooun, W. Zhang, and M. Alam, “Primary structure and functional analysis of the soluble transducer protein HtrXI in the archaeon Halobacterium salinarium,” Journal of Bacteriology, vol. 179, no. 9, pp. 2963–2968, 1997.
[52]
E. Hildebrand and A. Schimz, “The lifetime of photosensory signals in Halobacterium halobium and its dependence on protein methylation,” Biochimica et Biophysica Acta, vol. 1052, no. 1, pp. 96–105, 1990.
[53]
S. Hou, A. Brooun, H. S. Yu, T. Freitas, and M. Alam, “Sensory rhodopsin II transducer HtrII is also responsible for serine chemotaxis in the archaeon Halobacterium salinarum,” Journal of Bacteriology, vol. 180, no. 6, pp. 1600–1602, 1998.