Many archaeal proteins undergo posttranslational modifications. S-layer proteins and flagellins have been used successfully to study a variety of these modifications, including N-linked glycosylation, signal peptide removal and lipid modification. Use of these well-characterized reporter proteins in the genetically tractable model organisms, Haloferax volcanii, Methanococcus voltae and Methanococcus maripaludis, has allowed dissection of the pathways and characterization of many of the enzymes responsible for these modifications. Such studies have identified archaeal-specific variations in signal peptidase activity not found in the other domains of life, as well as the enzymes responsible for assembly and biosynthesis of novel N-linked glycans. In vitro assays for some of these enzymes have already been developed. N-linked glycosylation is not essential for either Hfx. volcanii or the Methanococcus species, an observation that allowed researchers to analyze the role played by glycosylation in the function of both S-layers and flagellins, by generating mutants possessing these reporters with only partial attached glycans or lacking glycan altogether. In future studies, it will be possible to consider questions related to the heterogeneity associated with given modifications, such as differential or modulated glycosylation. 1. Introduction Carl Woese initially defined the third form of life, the Archaea, on the basis of the novel oligonucleotide signatures of their small ribosomal subunit RNA [1–3]. Specifically, by generating phylogenetic trees based on 16S rRNA sequences, Woese clearly showed that Archaea formed a unique group, distinct from Bacteria or Eukarya. However, early analysis also revealed that this unusual group of microbes shared a variety of other characteristics, most notably ether-linked membrane lipids, a variety of unusual cell walls (none of which contained murein), atypical DNA-dependent RNA polymerases and later, their own variation of flagella [4, 5]. Indeed, cell wall composition was one of the very first phenotypical traits of the Archaea considered that allowed for differentiation from Bacteria [6] and was considered in the early days of archaeal research to be “the only useful phylogenetic criterion, other than direct molecular phylogenetic measurement” to distinguish between the two prokaryotic domains [7]. A common feature of many genera of Archaea, found in representatives of all the major lineages, is the presence of an outermost component of the cell envelope termed the surface (S)-layer, comprising protein or often
References
[1]
C. R. Woese, “The archaeal concept and the world it lives in: a retrospective,” Photosynthesis Research, vol. 80, no. 1–3, pp. 361–372, 2004.
[2]
G. E. Fox, E. Stackebrandt, R. B. Hespell, et al., “The phylogeny of prokaryotes,” Science, vol. 209, no. 4455, pp. 457–463, 1980.
[3]
C. R. Woese and G. E. Fox, “Phylogenetic structure of the prokaryotic domain: the primary kingdoms,” Proceedings of the National Academy of Sciences of the United States of America, vol. 74, no. 11, pp. 5088–5090, 1977.
[4]
W. Zillig, “Comparative biochemistry of Archaea and Bacteria,” Current Opinion in Genetics and Development, vol. 1, no. 4, pp. 544–551, 1991.
[5]
K. F. Jarrell, D. J. VanDyke, and J. Wu, “Archaeal flagella and pili,” in Pili and Flagella: Current Research and Future Trends, K. F. Jarrell, Ed., pp. 215–234, Caister Academic Press, Norfolk, UK, 2009.
[6]
O. Kandler and H. Konig, “Cell envelopes of archaebacteria,” in The Bacteria. A Treatise on Structure and Function, Academic Press, Orlando, Fla, USA, 1985.
[7]
L. J. Magrum, K. R. Luehrsen, and C. R. Woese, “Are extreme halophiles actually “bacteria”?” Journal of Molecular Evolution, vol. 11, no. 1, pp. 1–8, 1978.
[8]
S. Y. M. Ng, B. Zolghadr, A. J. M. Driessen, S.-V. Albers, and K. F. Jarrell, “Cell surface structures of archaea,” Journal of Bacteriology, vol. 190, no. 18, pp. 6039–6047, 2008.
[9]
S. Nickell, R. Hegerl, W. Baumeister, and R. Rachel, “Pyrodictium cannulae enter the periplasmic space but do not enter the cytoplasm, as revealed by cryo-electron tomography,” Journal of Structural Biology, vol. 141, no. 1, pp. 34–42, 2003.
[10]
C. Moissl, R. Rachel, A. Briegel, H. Engelhardt, and R. Huber, “The unique structure of archaeal 'hami', highly complex cell appendages with nano-grappling hooks,” Molecular Microbiology, vol. 56, no. 2, pp. 361–370, 2005.
[11]
Y. A. Wang, X. Yu, S. Y. M. Ng, K. F. Jarrell, and E. H. Egelman, “The structure of an archaeal pilus,” Journal of Molecular Biology, vol. 381, no. 2, pp. 456–466, 2008.
[12]
K. F. Jarrell and M. J. McBride, “The surprisingly diverse ways that prokaryotes move,” Nature Reviews Microbiology, vol. 6, no. 6, pp. 466–476, 2008.
[13]
M. F. Mescher and J. L. Strominger, “Purification and characterization of a prokaryotic glycoprotein from the cell envelope of Halobacterium salinarium,” The Journal of Biological Chemistry, vol. 251, no. 7, pp. 2005–2014, 1976.
[14]
J. Lechner and M. Sumper, “The primary structure of a procaryotic glycoprotein. Cloning and sequencing of the cell surface glycoprotein gene of halobacteria,” The Journal of Biological Chemistry, vol. 262, no. 20, pp. 9724–9729, 1987.
[15]
R. Mengele and M. Sumper, “Drastic differences in glycosylation of related S-layer glycoproteins from moderate and extreme halophiles,” The Journal of Biological Chemistry, vol. 267, no. 12, pp. 8182–8185, 1992.
[16]
M. Sumper, “Halobacterial glycoprotein biosynthesis,” Biochimica et Biophysica Acta, vol. 906, no. 1, pp. 69–79, 1987.
[17]
S. Yurist-Doutsch, B. Chaban, D. J. VanDyke, K. F. Jarrell, and J. Eichler, “Sweet to the extreme: protein glycosylation in Archaea,” Molecular Microbiology, vol. 68, no. 5, pp. 1079–1084, 2008.
[18]
S. Y. M. Ng, B. Chaban, D. J. VanDyke, and K. F. Jarrell, “Archaeal signal peptidases,” Microbiology, vol. 153, no. 2, pp. 305–314, 2007.
[19]
M. Abu-Qarn, J. Eichler, and N. Sharon, “Not just for Eukarya anymore: protein glycosylation in Bacteria and Archaea,” Current Opinion in Structural Biology, vol. 18, no. 5, pp. 544–550, 2008.
[20]
M. Pohlschr?der, M. I. Giménez, and K. F. Jarrell, “Protein transport in Archaea: sec and twin arginine translocation pathways,” Current Opinion in Microbiology, vol. 8, no. 6, pp. 713–719, 2005.
[21]
A. L. Houwink, “Flagella, gas vacuoles and cell-wall structure in Halobacterium halobium; an electron microscope study,” Journal of General Microbiology, vol. 15, pp. 146–150, 1956.
[22]
W. Stoeckenius and R. Rowen, “A morphological study of Halobacterium halobium and its lysis in media of low salt concentration,” Journal of Cell Biology, vol. 34, no. 1, pp. 365–393, 1967.
[23]
H. Steensland and H. Larsen, “A study of the cell envelope of the halobacteria,” Journal of General Microbiology, vol. 55, no. 3, pp. 325–336, 1969.
[24]
R. G. Kirk and M. Ginzburg, “Ultrastructure of two species of Halobacterium,” Journal of Ultrasructure Research, vol. 41, no. 1-2, pp. 80–94, 1972.
[25]
A. E. Blaurock, W. Stoeckenius, D. Oesterhelt, and G. L. Scherphof, “Structure of the cell envelope of Halobacterium halobium,” Journal of Cell Biology, vol. 71, no. 1, pp. 1–22, 1976.
[26]
M. Kessel, I. Wildhaber, S. Cohen, and W. Baumeister, “Three-dimensional structure of the regular surface glycoprotein layer of Halobacterium volcanii from the Dead Sea,” The EMBO Journal, vol. 7, pp. 1549–1554, 1988.
[27]
S. Trachtenberg, B. Pinnick, and M. Kessel, “The cell surface glycoprotein layer of the extreme halophile Halobacterium salinarum and its relation to Haloferax volcanii: cryo-electron tomography of freeze-substituted cells and projection studies of negatively stained envelopes,” Journal of Structural Biology, vol. 130, no. 1, pp. 10–26, 2000.
[28]
O. Kandler and H. Konig, “Cell envelopes of archaea: structure and chemistry,” in The Biochemistry of Archaea, M. Kates, D. J. Kusher, and A. T. Matheson, Eds., pp. 223–259, Elsevier, Amsterdam, The Netherlands, 1993.
[29]
H. Konig, K. O. Stetter, W. Postulka, and F. Klink, “Studies on archaebacterial S-layers,” Systematic and Applied Microbiology, vol. 7, pp. 300–309, 1986.
[30]
E. Nusser and H. Konig, “S layer studies on three species of Methanococcus living at different temperatures,” Canadian Journal of Microbiology, vol. 33, no. 3, pp. 256–261, 1987.
[31]
E. Akca, H. Claus, N. Schultz et al., “Genes and derived amino acid sequences of S-layer proteins from mesophilic, thermophilic, and extremely thermophilic methanococci,” Extremophiles, vol. 6, no. 5, pp. 351–358, 2002.
[32]
S. F. Koval and K. F. Jarrell, “Ultrastructure and biochemistry of the cell wall of Methanococcus voltae,” Journal of Bacteriology, vol. 169, no. 3, pp. 1298–1306, 1987.
[33]
S. Voisin, R. S. Houliston, J. Kelly et al., “Identification and characterization of the unique N-linked glycan common to the flagellins and S-layer glycoprotein of Methanococcus voltae,” The Journal of Biological Chemistry, vol. 280, no. 17, pp. 16586–16593, 2005.
[34]
G. B. Patel, C. G. Choquet, J. H. E. Nash, and G. D. Sprott, “Formation and regeneration of Methanococcus voltae protoplasts,” Applied and Environmental Microbiology, vol. 59, no. 1, pp. 27–33, 1993.
[35]
G. B. Patel, J. H. E. Nash, B. J. Agnew, and G. D. Sprott, “Natural and electroporation-mediated transformation of Methanococcus voltae protoplasts,” Applied and Environmental Microbiology, vol. 60, no. 3, pp. 903–907, 1994.
[36]
U. Karcher, H. Schroder, E. Haslinger et al., “Primary structure of the heterosaccharide of the surface glycoprotein of Methanothermus fervidus,” The Journal of Biological Chemistry, vol. 268, no. 36, pp. 26821–26826, 1993.
[37]
K. R. Sowers, J. E. Boone, and R. P. Gunsalus, “Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity,” Applied and Environmental Microbiology, vol. 59, no. 11, pp. 3832–3839, 1993.
[38]
G.-W. Cheong, Z. Cejka, J. Peters, K. O. Stetter, and W. Baumeister, “The surface protein layer of Methanoplanus limicola: three-dimensional structure and chemical characterization,” Systematic and Applied Microbiology, vol. 14, no. 3, pp. 209–217, 1991.
[39]
G.-W. Cheong, R. Guckenberger, K.-H. Fuchs, H. Gross, and W. Baumeister, “The structure of the surface layer of Methanoplanus limicola obtained by a combined electron microscopy and scanning tunneling microscopy approach,” Journal of Structural Biology, vol. 111, no. 2, pp. 125–134, 1993.
[40]
M. Firtel, G. Southam, G. Harauz, and T. J. Beveridge, “Characterization of the cell wall of the sheathed methanogen Methanospirillum hungatei GP1 as an S layer,” Journal of Bacteriology, vol. 175, no. 23, pp. 7550–7560, 1993.
[41]
M. Stewart, T. J. Beveridge, and G. D. Sprott, “Crystalline order to high resolution in the sheath of Methanospirillum hungatei: a cross-beta structure,” Journal of Molecular Biology, vol. 183, no. 3, pp. 509–515, 1985.
[42]
T. J. Beveridge, G. D. Sprott, and P. Whippey, “Ultrastructure, inferred porosity, and gram-staining character of Methanospirillum hungatei filament termini describe a unique cell permeability for this archaeobacterium,” Journal of Bacteriology, vol. 173, no. 1, pp. 130–140, 1991.
[43]
D. Pum, P. Messner, and U. B. Sleytr, “Role of the S layer in morphogenesis and cell division of the archaebacterium Methanocorpusculum sinense,” Journal of Bacteriology, vol. 173, no. 21, pp. 6865–6873, 1991.
[44]
K. F. Jarrell, S. Y. Ng, and B. Chaban, “Flagellation and chemotaxis,” in Archaea: Molecular and Cellular Biology, R. Cavicchioli, Ed., pp. 385–410, ASM Press, Washington, DC, USA, 2007.
[45]
K. F. Jarrell, D. P. Bayley, and A. S. Kostyukova, “The archaeal flagellum: a unique motility structure,” Journal of Bacteriology, vol. 178, no. 17, pp. 5057–5064, 1996.
[46]
S. Y. M. Ng, B. Chaban, and K. F. Jarrell, “Archaeal flagella, bacterial flagella and type IV pili: a comparison of genes and posttranslational modifications,” Journal of Molecular Microbiology and Biotechnology, vol. 11, no. 3-5, pp. 167–191, 2006.
[47]
M. L. Kalmokoff and K. F. Jarrell, “Cloning and sequencing of a multigene family encoding the flagellins of Methanococcus voltae,” Journal of Bacteriology, vol. 173, no. 22, pp. 7113–7125, 1991.
[48]
S. L. Bardy and K. F. Jarrell, “FlaK of the archaeon Methanococcus maripaludis possesses preflagellin peptidase activity,” FEMS Microbiology Letters, vol. 208, no. 1, pp. 53–59, 2002.
[49]
S. L. Bardy, T. Mori, K. Komoriya, S.-I. Aizawa, and K. F. Jarrell, “Identification and localization of flagellins FlaA and FlaB3 within flagella of Methanococcus voltae,” Journal of Bacteriology, vol. 184, no. 19, pp. 5223–5233, 2002.
[50]
D. M. Faguy, S. F. Koval, and K. F. Jarrell, “Physical characterization of the flagella and flagellins from Methanospirillum hungatei,” Journal of Bacteriology, vol. 176, no. 24, pp. 7491–7498, 1994.
[51]
G. Southam, M. L. Kalmokoff, K. F. Jarrell, S. F. Koval, and T. J. Beveridge, “Isolation, characterization, and cellular insertion of the flagella from two strains of the archaebacterium Methanospirillum hungatei,” Journal of Bacteriology, vol. 172, no. 6, pp. 3221–3228, 1990.
[52]
D. Cruden, R. Sparling, and A. J. Markovetz, “Isolation and ultrastructure of the flagella of Methanococcus thermolithotrophicus and Methanospirillum hungatei,” Applied and Environmental Microbiology, vol. 55, no. 6, pp. 1414–1419, 1989.
[53]
M. Alam and D. Oesterhelt, “Morphology, function and isolation of halobacterial flagella,” Journal of Molecular Biology, vol. 176, no. 4, pp. 459–475, 1984.
[54]
M. Alam and D. Oesterhelt, “Purification, reconstitution and polymorphic transition of halobacterial flagella,” Journal of Molecular Biology, vol. 194, no. 3, pp. 495–499, 1987.
[55]
L. Gerl, R. Deutzmann, and M. Sumper, “Halobacterial flagellins are encoded by a multigene family Identification of all five gene products,” FEBS Letters, vol. 244, no. 1, pp. 137–140, 1989.
[56]
N. Patenge, A. Berendes, H. Engelhardt, S. C. Schuster, and D. Oesterhelt, “The fla gene cluster is involved in the biogenesis of flagella in Halobacterium salinarum,” Molecular Microbiology, vol. 41, no. 3, pp. 653–663, 2001.
[57]
M. G. Pyatibratov, S. N. Beznosov, R. Rachel et al., “Alternative flagellar filament types in the haloarchaeon Haloarcula marismortui,” Canadian Journal of Microbiology, vol. 54, no. 10, pp. 835–844, 2008.
[58]
M. Tripepi, S. Imam, and M Pohlschroder, “Haloferax volcanii flagella are required for motility but are not involved in PibD-dependent surface adhesion,” Journal of Bacteriology, vol. 192, no. 12, pp. 3093–3102, 2010.
[59]
Z. Szabó, M. Sani, M. Groeneveld et al., “Flagellar motility and structure in the hyperthermoacidophilic archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 189, no. 11, pp. 4305–4309, 2007.
[60]
M. G. Pyatibratov, K. Leonard, V. Y. Tarasov, and O. V. Fedorov, “Two immunologically distinct types of protofilaments can be identified in Natrialba magadii flagella,” FEMS Microbiology Letters, vol. 212, no. 1, pp. 23–27, 2002.
[61]
I. Serganova, V. Ksenzenko, A. Serganov et al., “Sequencing of flagellin genes from Natrialba magadii provides new insight into evolutionary aspects of archaeal flagellins,” Journal of Bacteriology, vol. 184, no. 1, pp. 318–322, 2002.
[62]
K. Nagahisa, S. Ezaki, S. Fujiwara, T. Imanaka, and M. Takagi, “Sequence and transcriptional studies of five clustered flagellin genes from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1,” FEMS Microbiology Letters, vol. 178, no. 1, pp. 183–190, 1999.
[63]
D. J. N?ther, R. Rachel, G. Wanner, and R. Wirth, “Flagella of Pyrococcus furiosus: multifunctional organelles, made for swimming, adhesion to various surfaces, and cell-cell contacts,” Journal of Bacteriology, vol. 188, no. 19, pp. 6915–6923, 2006.
[64]
B. Chaban, S. Y. M. Ng, M. Kanbe et al., “Systematic deletion analyses of the fla genes in the flagella operon identify several genes essential for proper assembly and function of flagella in the archaeon, Methanococcus maripaludis,” Molecular Microbiology, vol. 66, no. 3, pp. 596–609, 2007.
[65]
A. F. Ellen, B. Zolghadr, A. J. M. Driessen, and S. V. Albers, “Shaping the Archaeal Cell Envelope,” Archaea, vol. 2010, Article ID 608243, 2010.
[66]
R. C. H. del Rosario, F. Diener, M. Diener, and D. Oesterhelt, “The steady-state phase distribution of the motor switch complex model of Halobacterium salinarum,” Mathematical Biosciences, vol. 222, no. 2, pp. 117–126, 2009.
[67]
T. Nutsch, D. Oesterhelt, E. D. Gilles, and W. Marwan, “A quantitative model of the switch cycle of an archaeal flagellar motor and its sensory control,” Biophysical Journal, vol. 89, no. 4, pp. 2307–2323, 2005.
[68]
W. Marwan, M. Alam, and D. Oesterhelt, “Rotation and switching of the flagellar motor assembly in Halobacterium halobium,” Journal of Bacteriology, vol. 173, no. 6, pp. 1971–1977, 1991.
[69]
D. M. Faguy and K. F. Jarrell, “A twisted tale: the origin and evolution of motility and chemotaxis in prokaryotes,” Microbiology, vol. 145, no. 2, pp. 279–281, 1999.
[70]
D. F. Blair, “Flagellar movement driven by proton translocation,” FEBS Letters, vol. 545, no. 1, pp. 86–95, 2003.
[71]
S. Streif, W. F. Staudinger, W. Marwan, and D. Oesterhelt, “Flagellar rotation in the archaeon Halobacterium salinarum depends on ATP,” Journal of Molecular Biology, vol. 384, no. 1, pp. 1–8, 2008.
[72]
D. E. Bradley, “A function of Pseudomonas aeruginosa PAO polar pili: twitching motility,” Canadian Journal of Microbiology, vol. 26, no. 2, pp. 146–154, 1980.
[73]
S. Cohen-Krausz and S. Trachtenberg, “The flagellar filament structure of the extreme acidothermophile Sulfolobus shibatae B12 suggests that archaeabacterial flagella have a unique and common symmetry and design,” Journal of Molecular Biology, vol. 375, no. 4, pp. 1113–1124, 2008.
[74]
S. Cohen-Krausz and S. Trachtenberg, “The structure of the archeabacterial flagellar filament of the extreme halophile Halobacterium salinarum R1M1 and its relation to eubacterial flagellar filaments and type IV pili,” Journal of Molecular Biology, vol. 321, no. 3, pp. 383–395, 2002.
[75]
S. Trachtenberg and S. Cohen-Krausz, “The archaeabacterial flagellar filament: a bacterial propeller with a pilus-like structure,” Journal of Molecular Microbiology and Biotechnology, vol. 11, no. 3–5, pp. 208–220, 2006.
[76]
S. L. Bardy and K. F. Jarrell, “Cleavage of preflagellins by an aspartic acid signal peptidase is essential for flagellation in the archaeon Methanococcus voltae,” Molecular Microbiology, vol. 50, no. 4, pp. 1339–1347, 2003.
[77]
D. P. Bayley and K. F. Jarrell, “Further evidence to suggest that archaeal flagella are related to bacterial type IV pili,” Journal of Molecular Evolution, vol. 46, no. 3, pp. 370–373, 1998.
[78]
C. R. Peabody, Y. J. Chung, M.-R. Yen, D. Vidal-Ingigliardi, A. P. Pugsley, and M. H. Saier Jr., “Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella,” Microbiology, vol. 149, no. 11, pp. 3051–3072, 2003.
[79]
R. M. Macnab, “How bacteria assemble flagella,” Annual Review of Microbiology, vol. 57, pp. 77–100, 2003.
[80]
K. F. Jarrell, D. P. Bayley, V. Florian, and A. Klein, “Isolation and characterization of insertional mutations in flagellin genes in the archaeon Methanococcus voltae,” Molecular Microbiology, vol. 20, no. 3, pp. 657–666, 1996.
[81]
V. Y. Tarasov, M. G. Pyatibratov, S.-L. Tang, M. Dyall-Smith, and O. V. Fedorov, “Role of flagellins from A and B loci in flagella formation of Halobacterium salinarum,” Molecular Microbiology, vol. 35, no. 1, pp. 69–78, 2000.
[82]
S. N. Beznosov, M. G. Pyatibratov, and O. V. Fedorov, “On the multicomponent nature of Halobacterium salinarum flagella,” Microbiology, vol. 76, no. 4, pp. 435–441, 2007.
[83]
S.-V. Albers and A. J. M. Driessen, “Analysis of ATPases of putative secretion operons in the thermoacidophilic archaeon Sulfolobus solfataricus,” Microbiology, vol. 151, no. 3, pp. 763–773, 2005.
[84]
N. A. Thomas and K. F. Jarrell, “Characterization of flagellum gene families of methanogenic archaea and localization of novel flagellum accessory proteins,” Journal of Bacteriology, vol. 183, no. 24, pp. 7154–7164, 2001.
[85]
N. A. Thomas, S. Mueller, A. Klein, and K. F. Jarrell, “Mutants in flaI and flaJ of the archaeon Methanococcus voltae are deficient in flagellum assembly,” Molecular Microbiology, vol. 46, no. 3, pp. 879–887, 2002.
[86]
M. Schlesner, A. Miller, S. Streif et al., “Identification of Archaea-specific chemotaxis proteins which interact with the flagellar apparatus,” BMC Microbiology, vol. 9, article 56, 2009.
[87]
S. M. Logan, “Flagellar glycosylation—a new component of the motility repertoire?” Microbiology, vol. 152, no. 5, pp. 1249–1262, 2006.
[88]
J. Kelly, S. M. Logan, K. F. Jarrell, D. J. VanDyke, and E. Vinogradov, “A novel N-linked flagellar glycan from Methanococcus maripaludis,” Carbohydrate Research, vol. 344, no. 5, pp. 648–653, 2009.
[89]
F. Wieland, G. Paul, and M. Sumper, “Halobacterial flagellins are sulfated glycoproteins,” The Journal of Biological Chemistry, vol. 260, no. 28, pp. 15180–15185, 1985.
[90]
R. M. Harshey, “Bacterial motility on a surface: many ways to a common goal,” Annual Review of Microbiology, vol. 57, pp. 249–273, 2003.
[91]
J. K. Anderson, T. G. Smith, and T. R. Hoover, “Sense and sensibility: flagellum-mediated gene regulation,” Trends in Microbiology, vol. 18, no. 1, pp. 30–37, 2010.
[92]
Q. Wang, A. Suzuki, S. Mariconda, S. Porwollik, and R. M. Harshey, “Sensing wetness: a new role for the bacterial flagellum,” EMBO Journal, vol. 24, no. 11, pp. 2034–2042, 2005.
[93]
S. Schopf, G. Wanner, R. Rachel, and R. Wirth, “An archaeal bi-species biofilm formed by Pyrococcus furiosus and Methanopyrus kandleri,” Archives of Microbiology, vol. 190, no. 3, pp. 371–377, 2008.
[94]
B. Zolghadr, A. Kling, A. Koerdt, A. J.M. Driessen, R. Rachel, and S.-V. Albers, “Appendage-mediated surface adherence of Sulfolobus solfataricus,” Journal of Bacteriology, vol. 192, no. 1, pp. 104–110, 2010.
[95]
M. Paetzel, A. Karla, N. C. J. Strynadka, and R. E. Dalbey, “Signal peptidases,” Chemical Reviews, vol. 102, no. 12, pp. 4549–4580, 2002.
[96]
S. Y. M. Ng and K. F. Jarrell, “Cloning and characterization of archaeal type I signal peptidase from Methanococcus voltae,” Journal of Bacteriology, vol. 185, no. 20, pp. 5936–5942, 2003.
[97]
S. L. Bardy, S. Y. M. Ng, D. S. Carnegie, and K. F. Jarrell, “Site-directed mutagenesis analysis of amino acids critical for activity of the type I signal peptidase of the archaeon Methanococcus voltae,” Journal of Bacteriology, vol. 187, no. 3, pp. 1188–1191, 2005.
[98]
E. Fink-Lavi and J. Eichler, “Identification of residues essential for the catalytic activity of Sec11b, one of the two type I signal peptidases of Haloferax volcanii,” FEMS Microbiology Letters, vol. 278, no. 2, pp. 257–260, 2008.
[99]
W. R. Tschantz, M. Sung, V. M. Delgado-Partin, and R. E. Dalbey, “A serine and a lysine residue implicated in the catalytic mechanism of the Escherichia coli leader peptidase,” The Journal of Biological Chemistry, vol. 268, no. 36, pp. 27349–27354, 1993.
[100]
M. Paetzel, R. E. Dalbey, and N. C. J. Strynadka, “Crystal structure of a bacterial signal peptidase apoenzyme. Implications for signal peptide binding and the Ser-Lys dyad mechanism,” The Journal of Biological Chemistry, vol. 277, no. 11, pp. 9512–9519, 2002.
[101]
R. E. Dalbey, M. O. Lively, S. Bron, and J. M. van Dijl, “The chemistry and enzymology of the type I signal peptidases,” Protein Science, vol. 6, no. 6, pp. 1129–1138, 1997.
[102]
C. VanValkenburgh, X. Chen, C. Mullins, H. Fang, and N. Green, “The catalytic mechanism of endoplasmic reticulum signal peptidase appears to be distinct from most eubacterial signal peptidases,” The Journal of Biological Chemistry, vol. 274, no. 17, pp. 11519–11525, 1999.
[103]
A. Fine, V. Irihimovitch, I. Dahan, Z. Konrad, and J. Eichler, “Cloning, expression, and purification of functional Sec11a and Sec11b, type I signal peptidases of the archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 188, no. 5, pp. 1911–1919, 2006.
[104]
S.-V. Albers, Z. Szabó, and A. J. M. Driessen, “Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity,” Journal of Bacteriology, vol. 185, no. 13, pp. 3918–3925, 2003.
[105]
Z. Szabó, A. O. Stahl, S.-V. Albers, J. C. Kissinger, A. J. M. Driessen, and M. Pohlschr?der, “Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases,” Journal of Bacteriology, vol. 189, no. 3, pp. 772–778, 2007.
[106]
N. A. Thomas, E. D. Chao, and K. F. Jarrell, “Identification of amino acids in the leader peptide of Methanococcus voltae preflagellin that are important in posttranslational processing,” Archives of Microbiology, vol. 175, no. 4, pp. 263–269, 2001.
[107]
S. Y. M. Ng, D. J. VanDyke, B. Chaban et al., “Different minimal signal peptide lengths recognized by the archaeal prepilin-like peptidases FlaK and PibD,” Journal of Bacteriology, vol. 191, no. 21, pp. 6732–6740, 2009.
[108]
Z. Szabó, S.-V. Albers, and A. J. M. Driessen, “Active-site residues in the type IV prepilin peptidase homologue PibD from the archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 188, no. 4, pp. 1437–1443, 2006.
[109]
S.-V. Albers and M. Pohlschr?der, “Diversity of archaeal type IV pilin-like structures,” Extremophiles, vol. 13, pp. 403–410, 2009.
[110]
D. W. Müller, C. Meyer, S. Gürster et al., “The Iho670 fibers of Ignicoccus hospitalis: a new type of archaeal cell surface appendage,” Journal of Bacteriology, vol. 191, no. 20, pp. 6465–6468, 2009.
[111]
M. A. Koncewicz, “Glycoproteins in the cell envelope of Halobacterium halobium,” Biochemical Journal, vol. 128, no. 4, p. 124, 1972.
[112]
M. F. Mescher, J. L. Strominger, and S. W. Watson, “Protein and carbohydrate composition of the cell envelope of Halobacterium salinarium,” Journal of Bacteriology, vol. 120, no. 2, pp. 945–954, 1974.
[113]
J. Eichler and M. W. W. Adams, “Posttranslational protein modification in Archaea,” Microbiology and Molecular Biology Reviews, vol. 69, no. 3, pp. 393–425, 2005.
[114]
M. Abu-Qarn and J. Eichler, “Protein N-glycosylation in Archaea: defining Haloferax volcanii genes involved in S-layer glycoprotein glycosylation,” Molecular Microbiology, vol. 61, no. 2, pp. 511–525, 2006.
[115]
B. Chaban, S. Voisin, J. Kelly, S. M. Logan, and K. F. Jarrell, “Identification of genes involved in the biosynthesis and attachment of Methanococcus voltae N-linked glycans: insight into N-linked glycosylation pathways in Archaea,” Molecular Microbiology, vol. 61, no. 1, pp. 259–268, 2006.
[116]
D. J. Vandyke, J. Wu, S. M. Logan et al., “Identification of genes involved in the assembly and attachment of a novel flagellin N-linked tetrasaccharide important for motility in the archaeon Methanococcus maripaludis,” Molecular Microbiology, vol. 72, no. 3, pp. 633–644, 2009.
[117]
D. J. VanDyke, J. Wu, S. Y. M. Ng et al., “Identification of a putative acetyltransferase gene, MMP0350, which affects proper assembly of both flagella and pili in the archaeon Methanococcus maripaludis,” Journal of Bacteriology, vol. 190, no. 15, pp. 5300–5307, 2008.
[118]
C. M. Szymanski and B. W. Wren, “Protein glycosylation in bacterial mucosal pathogens,” Nature Reviews Microbiology, vol. 3, no. 3, pp. 225–237, 2005.
[119]
M. Abu-Qarn, A. Giordano, F. Battaglia et al., “Identification of AglE, a second glycosyltransferase involved in N glycosylation of the Haloferax volcanii S-layer glycoprotein,” Journal of Bacteriology, vol. 190, no. 9, pp. 3140–3146, 2008.
[120]
S. Yurist-Doutsch, M. Abu-Qarn, F. Battaglia et al., “AglF, aglG and aglI, novel members of a gene island involved in the N-glycosylation of the Haloferax volcanii S-layer glycoprotein,” Molecular Microbiology, vol. 69, no. 5, pp. 1234–1245, 2008.
[121]
S. Yurist-Doutsch and J. Eichler, “Manual annotation, transcriptional analysis, and protein expression studies reveal novel genes in the agl cluster responsible for N glycosylation in the halophilic archaeon Haloferax volcanii,” Journal of Bacteriology, vol. 191, no. 9, pp. 3068–3075, 2009.
[122]
S. Yurist-Doutsch, H. Magidovich, V. V. Ventura, P. G. Hitchen, A. Dell, and J. Eichler, “N-glycosylation in Archaea: on the coordinated actions of Haloferax volcanii AglF and AglM,” Molecular Microbiology, vol. 75, no. 4, pp. 1047–1058, 2010.
[123]
M. Abu-Qarn, S. Yurist-Doutsch, A. Giordano et al., “Haloferax volcanii AglB and AglD are involved in N-glycosylation of the S-layer glycoprotein and proper assembly of the surface layer,” Journal of Molecular Biology, vol. 374, no. 5, pp. 1224–1236, 2007.
[124]
H. Magidovich, S. Yurist-Doutsch, Z. Konrad et al., “AglP is a S-adenosyl-L-methionine-dependent methyltransferase that participates in the N-glycosylation pathway of Haloferax volcanii,” Molecular Microbiology, vol. 76, no. 1, pp. 190–199, 2010.
[125]
B. Chaban, S. M. Logan, J. F. Kelly, and K. F. Jarrell, “AglC and AglK are involved in biosynthesis and attachment of diacetylated glucuronic acid to the N-glycan in Methanococcus voltae,” Journal of Bacteriology, vol. 91, no. 1, pp. 187–195, 2009.
[126]
H. Shams-Eldin, B. Chaban, S. Niehus, R. T. Schwarz, and K. F. Jarrell, “Identification of the archaeal alg7 gene homolog (encoding N-acetylglucosamine-1-phosphate transferase) of the N-linked glycosylation system by cross-domain complementation in Saccharomyces cerevisiae,” Journal of Bacteriology, vol. 190, no. 6, pp. 2217–2220, 2008.
[127]
B. C. Moore and J. A. Leigh, “Markerless mutagenesis in Methanococcus maripaludis demonstrates roles for alanine dehydrogenase, alanine racemase, and alanine permease,” Journal of Bacteriology, vol. 187, no. 3, pp. 972–979, 2005.
[128]
S. C. Namboori and D. E. Graham, “Acetamido sugar biosynthesis in the Euryarchaea,” Journal of Bacteriology, vol. 190, no. 8, pp. 2987–2996, 2008.
[129]
M. Sumper, E. Berg, R. Mengele, and I. Strobel, “Primary structure and glycosylation of the S-layer protein of Haloferax volcanii,” Journal of Bacteriology, vol. 172, no. 12, pp. 7111–7118, 1990.
[130]
A. Kikuchi, H. Sagami, and K. Ogura, “Evidence for covalent attachment of diphytanylglyceryl phosphate to the cell-surface glycoprotein of Halobacterium halobium,” The Journal of Biological Chemistry, vol. 274, no. 25, pp. 18011–18016, 1999.
[131]
H. Wakai, S. Nakamura, H. Kawasaki et al., “Cloning and sequencing of the gene encoding the cell surface glycoprotein of Haloarcula japonica strain TR-1,” Extremophiles, vol. 1, no. 1, pp. 29–35, 1997.
[132]
Z. Konrad and J. Eichler, “Lipid modification of proteins in Archaea: attachment of a mevalonic acid-based lipid moiety to the surface-layer glycoprotein of Haloferax volcanii follows protein translocation,” Biochemical Journal, vol. 366, no. 3, pp. 959–964, 2002.
[133]
J. Eichler, “Post-translational modification of the S-layer glycoprotein occurs following translocation across the plasma membrane of the haloarchaeon Haloferax volcanii,” European Journal of Biochemistry, vol. 268, no. 15, pp. 4366–4373, 2001.
[134]
D. P. Bayley, M. L. Kalmokoff, and K. F. Jarrell, “Effect of bacitracin on flagellar assembly and presumed glycosylation of the flagellins of Methanococcus deltae,” Archives of Microbiology, vol. 160, no. 3, pp. 179–185, 1993.
[135]
M. Falb, M. Aivaliotis, C. Garcia-Rizo et al., “Archaeal N-terminal protein maturation commonly involves N-terminal acetylation: a large-scale proteomics survey,” Journal of Molecular Biology, vol. 362, no. 5, pp. 915–924, 2006.
[136]
M. Aivaliotis, K. Gevaert, M. Falb et al., “Large-scale identification of N-terminal peptides in the halophilic Archaea Halobacterium salinarum and Natronomonas pharaonis,” Journal of Proteome Research, vol. 6, no. 6, pp. 2195–2204, 2007.
[137]
N. F. W. Saunders, C. Ng, M. Raftery, M. Guilhaus, A. Goodchild, and R. Cavicchioli, “Proteomic and computational analysis of secreted proteins with type I signal peptides from the antarctic archaeon Methanococcoides burtonii,” Journal of Proteome Research, vol. 5, no. 9, pp. 2457–2464, 2006.
[138]
P. A. Kirkland, M. A. Gil, I. M. Karadzic, and J. A. Maupin-Furlow, “Genetic and proteomic analyses of a proteasome-activating nucleotidase a mutant of the haloarchaeon Haloferax volcanii,” Journal of Bacteriology, vol. 190, no. 1, pp. 193–205, 2008.
[139]
D. R. Francoleon, P. Boontheung, Y. Yang et al., “S-layer, surface-accessible, and concanavalin a binding proteins of Methanosarcina acetivorans and Methanosarcina mazei,” Journal of Proteome Research, vol. 8, no. 4, pp. 1972–1982, 2009.