A conserved lipid-modified cysteine found in a protein motif commonly referred to as a lipobox mediates the membrane anchoring of a subset of proteins transported across the bacterial cytoplasmic membrane via the Sec pathway. Sequenced haloarchaeal genomes encode many putative lipoproteins and recent studies have confirmed the importance of the conserved lipobox cysteine for signal peptide processing of three lipobox-containing proteins in the model archaeon Haloferax volcanii. We have extended these in vivo analyses to additional Hfx. volcanii substrates, supporting our previous in silico predictions and confirming the diversity of predicted Hfx. volcanii lipoproteins. Moreover, using extensive comparative secretome analyses, we identified genes encodining putative lipoproteins across a wide range of archaeal species. While our in silico analyses, supported by in vivo data, indicate that most haloarchaeal lipoproteins are Tat substrates, these analyses also predict that many crenarchaeal species lack lipoproteins altogether and that other archaea, such as nonhalophilic euryarchaeal species, transport lipoproteins via the Sec pathway. To facilitate the identification of genes that encode potential haloarchaeal Tat-lipoproteins, we have developed TatLipo, a bioinformatic tool designed to detect lipoboxes in haloarchaeal Tat signal peptides. Our results provide a strong foundation for future studies aimed at identifying components of the archaeal lipoprotein biogenesis pathway. 1. Introduction Most precursors of secreted prokaryotic proteins are transported across cytoplasmic membranes via either the universally conserved Sec pathway or the Twin-arginine translocation (Tat) pathway [1, 2]. The targeting of secreted protein precursors to these translocation pathways is dependent upon the recognition of pathway-specific signal peptides [1, 3]. In bacteria, most substrates transported via these pathways contain a signal peptide processing site that is recognized by signal peptidase I (SPase I) after transfer through the cytoplasmic membrane [3, 4]. However, one type of secreted protein, the bacterial lipoprotein precursors, is processed by signal peptidase II (SPase II), which specifically recognizes a conserved “lipobox” motif at the C-terminus of the signal peptide [4, 5]. The lipobox contains a cysteine residue to which a glyceride-fatty acid lipid is attached by a prolipoprotein diacylglyceryl transferase (Lgt) [6, 7]. SPase II cleaves the precursor immediately upstream of this lipid-modified cysteine. In Gram-negative and some Gram-positive bacteria,
References
[1]
A. J. M. Driessen and N. Nouwen, “Protein translocation across the bacterial cytoplasmic membrane,” Annual Review of Biochemistry, vol. 77, pp. 643–667, 2008.
[2]
M. Pohlschr?der, E. Hartmann, N. J. Hand, K. Dilks, and A. Haddad, “Diversity and evolution of protein translocation,” Annual Review of Microbiology, vol. 59, pp. 91–111, 2005.
[3]
P. Natale, T. Brüser, and A. J. M. Driessen, “Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane—distinct translocases and mechanisms,” Biochimica et Biophysica Acta, vol. 1778, no. 9, pp. 1735–1756, 2008.
[4]
M. Paetzel, A. Karla, N. C. J. Strynadka, and R. E. Dalbey, “Signal peptidases,” Chemical Reviews, vol. 102, no. 12, pp. 4549–4579, 2002.
[5]
M. I. Hutchings, T. Palmer, D. J. Harrington, and I. C. Sutcliffe, “Lipoprotein biogenesis in Gram-positive bacteria: knowing when to hold 'em, knowing when to fold 'em,” Trends in Microbiology, vol. 17, no. 1, pp. 13–21, 2009.
[6]
K. Gan, S. D. Gupta, K. Sankaran, M. B. Schmid, and H. C. Wu, “Isolation and characterization of a temperature-sensitive mutant of Salmonella typhimurium defective in prolipoprotein modification,” The Journal of Biological Chemistry, vol. 268, no. 22, pp. 16544–16550, 1993.
[7]
K. Sankaran and H. C. Wu, “Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol,” The Journal of Biological Chemistry, vol. 269, no. 31, pp. 19701–19706, 1994.
[8]
S. D. Gupta and H. C. Wu, “Identification and subcellular localization of apolipoprotein N-acyltransferase in Escherichia coli,” FEMS Microbiology Letters, vol. 62, no. 1, pp. 37–41, 1991.
[9]
A. Tschumi, C. Nai, Y. Auchli et al., “Identification of apolipoprotein N-acyltransferase (Lnt) in mycobacteria,” The Journal of Biological Chemistry, vol. 284, no. 40, pp. 27146–27156, 2009.
[10]
A. Bolhuis, “Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway?” Microbiology, vol. 148, no. 11, pp. 3335–3346, 2002.
[11]
M. Falb, F. Pfeiffer, P. Palm et al., “Living with two extremes: conclusions from the genome sequence of Natronomonas pharaonis,” Genome Research, vol. 15, no. 10, pp. 1336–1343, 2005.
[12]
M. I. Giménez, K. Dilks, and M. Pohlschr?der, “Haloferax volcanii twin-arginine translocation substates include secreted soluble, C-terminally anchored and lipoproteins,” Molecular Microbiology, vol. 66, no. 6, pp. 1597–1606, 2007.
[13]
S. Mattar, B. Scharf, S. B. H. Kent, K. Rodewald, D. Oesterhelt, and M. Engelhard, “The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation,” The Journal of Biological Chemistry, vol. 269, no. 21, pp. 14939–14945, 1994.
[14]
K. F. Chater, S. Biró, K. J. Lee, T. Palmer, and H. Schrempf, “The complex extracellular biology of Streptomyces,” FEMS Microbiology Reviews, vol. 34, no. 2, pp. 171–198, 2010.
[15]
D. A. Widdick, K. Dilks, G. Chandra et al., “The twin-arginine translocation pathway is a major route of protein export in Streptomyces coelicolor,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 47, pp. 17927–17932, 2006.
[16]
M. Dyall-Smith, Halohandbook: Protocols for Haloarchaeal Genetics, 2008, http://www.haloarchaea.com/resources/halohandbook/Halohandbook_2008_v7.pdf.
[17]
G. Bitan-Banin, R. Ortenberg, and M. Mevarech, “Development of a gene knockout system for the halophilic archaeon Haloferax volcanii by use of the pyrE gene,” Journal of Bacteriology, vol. 185, no. 3, pp. 772–778, 2003.
[18]
M. Holmes, F. Pfeifer, and M. Dyall-Smith, “Improved shuttle vectors for Haloferax volcanii including a dual-resistance plasmid,” Gene, vol. 146, no. 1, pp. 117–121, 1994.
[19]
A. Large, C. Stamme, C. Lange et al., “Characterization of a tightly controlled promoter of the halophilic archaeon Haloferax volcanii and its use in the analysis of the essential cct1 gene,” Molecular Microbiology, vol. 66, no. 5, pp. 1092–1106, 2007.
[20]
L. B. Blyn, B. A. Braaten, and D. A. Low, “Regulation of pap pilin phase variation by a mechanism involving differential Dam methylation states,” EMBO Journal, vol. 9, no. 12, pp. 4045–4054, 1990.
[21]
T. Allers, H.-P. Ngo, M. Mevarech, and R. G. Lloyd, “Development of additional selectable markers for the halophilic Archaeon Haloferax volcanii based on the leuB and trpA genes,” Applied and Environmental Microbiology, vol. 70, no. 2, pp. 943–953, 2004.
[22]
K. Dilks, M. I. Giménez, and M. Pohlschr?der, “Genetic and biochemical analysis of the twin-arginine translocation pathway in halophilic archaea,” Journal of Bacteriology, vol. 187, no. 23, pp. 8104–8113, 2005.
[23]
N. Hulo, A. Bairoch, V. Bulliard et al., “The 20 years of PROSITE,” Nucleic Acids Research, vol. 36, no. 1, pp. D245–D249, 2008.
[24]
A. S. Juncker, H. Willenbrock, G. Von Heijne, S. Brunak, H. Nielsen, and A. Krogh, “Prediction of lipoprotein signal peptides in Gram-negative bacteria,” Protein Science, vol. 12, no. 8, pp. 1652–1662, 2003.
[25]
P. G. Bagos, K. D. Tsirigos, T. D. Liakopoulos, and S. J. Hamodrakas, “Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model,” Journal of Proteome Research, vol. 7, no. 12, pp. 5082–5093, 2008.
[26]
R. W. Rose, T. Brüser, J. C. Kissinger, and M. Pohlschr?der, “Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway,” Molecular Microbiology, vol. 45, no. 4, pp. 943–950, 2002.
[27]
L. K?ll, A. Krogh, and E. L. L. Sonnhammer, “A combined transmembrane topology and signal peptide prediction method,” Journal of Molecular Biology, vol. 338, no. 5, pp. 1027–1036, 2004.
[28]
B. C. Berks, T. Palmer, and F. Sargent, “Protein targeting by the bacterial twin-arginine translocation (Tat) pathway,” Current Opinion in Microbiology, vol. 8, no. 2, pp. 174–181, 2005.
[29]
K. Dilks, R. W. Rose, E. Hartmann, and M. Pohlschr?der, “Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey,” Journal of Bacteriology, vol. 185, no. 4, pp. 1478–1483, 2003.
[30]
D. J. N?ther and R. Rachel, “The outer membrane of the hyperthermophilic archaeon Ignicoccus: dynamics, ultrastructure and composition,” Biochemical Society Transactions, vol. 32, no. 2, pp. 199–203, 2004.
[31]
S. Hayashi, S.-Y. Chang, and S. Chang, “Modification and processing of internalized signal sequences of prolipoprotein in Escherichia coli and in Bacillus subtilis,” The Journal of Biological Chemistry, vol. 260, no. 9, pp. 5753–5759, 1985.
[32]
W. W. Navarre, S. Daefler, and O. Schneewind, “Cell wall sorting of lipoproteins in Staphylococcus aureus,” Journal of Bacteriology, vol. 178, no. 2, pp. 441–446, 1996.
[33]
D. Cavard, D. Baty, and S. P. Howard, “Lipoprotein nature of the colicin A lysis protein: effect of amino acid substitutions at the site of modification and processing,” Journal of Bacteriology, vol. 169, no. 5, pp. 2187–2194, 1987.