The minichromosome maintenance (MCM) complex is thought to function as the replicative helicase in archaea, separating the two strands of chromosomal DNA during replication. The catalytic activity resides within the C-terminal region of the MCM protein, while the N-terminal portion plays an important role in DNA binding and protein multimerization. An alignment of MCM homologues from several archaeal species revealed a number of conserved amino acids. Here several of the conserved residues located on the surface of the helicase have been mutated and their roles in MCM functions determined. It was found that some mutations result in increased affinity for ssDNA while the affinity for dsDNA is decreased. Other mutants exhibit the opposite effect. Thus, the data suggest that these conserved surface residues may participate in MCM-DNA interactions. 1. Introduction The minichromosome maintenance (MCM) helicase is thought to function as the replicative helicase in eukarya and archaea. Most archaeal species contain a single MCM homologue with biochemical properties that are similar to the eukaryotic enzyme. Both archaeal and eukaryal MCM helicases exhibit ATP-dependent 3′-5′ helicase activity, can bind and translocate along single-stranded (ss) and double-stranded (ds) DNA, unwind DNA-RNA hybrids while translocating on the DNA strand, and can displace proteins from DNA (reviewed in [1–3]). The archaeal MCM protein can be divided into three parts; the N-terminal region, the AAA+ catalytic core, and a C-terminal region that may form a helix-turn-helix (HTH) domain [4–7]. The three-dimensional structure of the N-terminal portion of the Methanothermobacter thermautotrophicus and Sulfolobus solfataricus MCM proteins revealed a three domain architecture [4, 5]. Biochemical studies showed that domain A participates in regulating helicase activity, domain B participates in DNA binding, and domain C is involved in hexamer formation, DNA binding and communication between the N-terminal part and the catalytic domains (reviewed in: [1, 3]). Although the N-terminal portion of MCM is less conserved than the AAA+ region, an alignment of the N-terminal region from a number of archaeal species revealed the presence of several highly conserved residues, particularly in domain C (Figure 1(a)). Several of these residues have previously been reported to play an essential role in communicating between the N-terminal DNA binding and C-terminal catalytic activity [8, 9]. In this study, several conserved residues in domain C of the M. thermautotrophicus MCM protein were individually
References
[1]
N. Sakakibara, L. M. Kelman, and Z. Kelman, “Unwinding the structure and function of the archaeal MCM helicase,” Molecular Microbiology, vol. 72, no. 2, pp. 286–296, 2009.
[2]
A. Costa and S. Onesti, “Structural biology of MCM helicases,” Critical Reviews in Biochemistry and Molecular Biology, vol. 44, no. 5, pp. 326–342, 2009.
[3]
A. S. Brewster and X. S. Chen, “Insights into the MCM functional mechanism: lessons learned from the archaeal MCM complex,” Critical Reviews in Biochemistry and Molecular Biology, vol. 45, no. 3, pp. 243–256, 2010.
[4]
R. J. Fletcher, B. E. Bishop, R. P. Leon, R. A. Sclafani, C. M. Ogata, and X. S. Chen, “The structure and function of MCM from archaeal M. thermoautotrophicum,” Nature Structural Biology, vol. 10, no. 3, pp. 160–167, 2003.
[5]
W. Liu, B. Pucci, M. Rossi, F. M. Pisani, and R. Ladenstein, “Structural analysis of the Sulfolobus solfataricus MCM protein N-terminal domain,” Nucleic Acids Research, vol. 36, no. 10, pp. 3235–3243, 2008.
[6]
A. S. Brewster, G. Wang, X. Yu et al., “Crystal structure of a near-full-length archaeal MCM: functional insights for an AAA+ hexameric helicase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 51, pp. 20191–20196, 2008.
[7]
B. Bae, Y.-H. Chen, A. Costa et al., “Insights into the architecture of the replicative helicase from the structure of an archaeal MCM homolog,” Structure, vol. 17, no. 2, pp. 211–222, 2009.
[8]
N. Sakakibara, R. Kasiviswanathan, E. Melamud, M. Han, F. P. Schwarz, and Z. Kelman, “Coupling of DNA binding and helicase activity is mediated by a conserved loop in the MCM protein,” Nucleic Acids Research, vol. 36, no. 4, pp. 1309–1320, 2008.
[9]
E. R. Barry, J. E. Lovett, A. Costa, S. M. Lea, and S. D. Bell, “Intersubunit allosteric communication mediated by a conserved loop in the MCM helicase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1051–1056, 2009.
[10]
R. Kasiviswanathan, J.-H. Shin, E. Melamud, and Z. Kelman, “Biochemical characterization of the Methanothermobacter thermautotrophicus minichromosome maintenance (MCM) helicase N-terminal domains,” Journal of Biological Chemistry, vol. 279, no. 27, pp. 28358–28366, 2004.
[11]
J.-H. Shin, B. Grabowski, R. Kasiviswanathan, S. D. Bell, and Z. Kelman, “Regulation of minichromosome maintenance helicase activity by Cdc6,” Journal of Biological Chemistry, vol. 278, no. 39, pp. 38059–38067, 2003.
[12]
J.-H. Shin and Z. Kelman, “The replicative helicases of bacteria, archaea, and eukarya can unwind RNA-DNA hybrid substrates,” Journal of Biological Chemistry, vol. 281, no. 37, pp. 26914–26921, 2006.
[13]
K. McEntee, G. M. Weinstock, and I. R. Lehman, “recA protein-catalyzed strand assimilation: stimulation by Escherichia coli single-stranded DNA-binding protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 77, no. 2, pp. 857–861, 1980.
[14]
J. H. Shin, Y. Jiang, B. Grabowski, J. Hurwitz, and Z. Kelman, “Substrate requirements for duplex DNA translocation by the eukaryal and archaeal minichromosome maintenance helicases,” The Journal of Biological Chemistry, vol. 278, no. 49, pp. 49053–49062, 2003.
[15]
W. H. Kirchhoff, “Exam: A Two-State Thermodynamic Analysis Program,” Tech Note 1401, pp. 1–103, NIST, 1993.
[16]
J.-H. Shin, G.-Y. Heo, and Z. Kelman, “The Methanothermobacter thermautotrophicus MCM helicase is active as a hexameric ring,” Journal of Biological Chemistry, vol. 284, no. 1, pp. 540–546, 2009.
[17]
Z. Kelman, S. Pietrokovski, and J. Hurwitz, “Isolation and characterization of a split B-type DNA polymerase from the archaeon Methanobacterium thermoautotrophicum ΔH,” Journal of Biological Chemistry, vol. 274, no. 40, pp. 28751–28761, 1999.
[18]
A. Poplawski, B. Grabowski, S. E. Long, and Z. Kelman, “The zinc finger domain of the archaeal minichromosome maintenance protein is required for helicase activity,” Journal of Biological Chemistry, vol. 276, no. 52, pp. 49371–49377, 2001.
[19]
J. P. J. Chong, M. K. Hayashi, M. N. Simon, R.-M. Xu, and B. Stillman, “A double-hexamer archaeal minichromosome maintenance protein is an ATP-dependent DNA helicase,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 4, pp. 1530–1535, 2000.
[20]
Z. Kelman, J.-K. Lee, and J. Hurwitz, “The single minichromosome maintenance protein of Methanobacterium thermoautotrophicum ΔH contains DNA helicase activity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 26, pp. 14783–14788, 1999.
[21]
D. F. Shechter, C. Y. Ying, and J. Gautier, “The intrinsic DNA helicase activity of Methanobacterium thermoautotrophicum ΔH minichromosome maintenance protein,” Journal of Biological Chemistry, vol. 275, no. 20, pp. 15049–15059, 2000.
[22]
R. Kasiviswanathan, J.-H. Shin, and Z. Kelman, “Interactions between the archaeal Cdc6 and MCM proteins modulate their biochemical properties,” Nucleic Acids Research, vol. 33, no. 15, pp. 4940–4950, 2005.
[23]
M. De Felice, L. Esposito, B. Pucci et al., “Biochemical characterization of a CDC6-like protein from the crenarchaeon Sulfolobus solfataricus,” Journal of Biological Chemistry, vol. 278, no. 47, pp. 46424–46431, 2003.
[24]
E. R. Jenkinson and J. P. J. Chong, “Minichromosome maintenance helicase activity is controlled by N- and C-terminal motifs and requires the ATPase domain helix-2 insert,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 20, pp. 7613–7618, 2006.
[25]
R. J. Fletcher, J. Shen, Y. Gómez-Llorente, C. San Martín, J. M. Carazo, and X. S. Chen, “Double hexamer disruption and biochemical activities of Methanobacterium thermoautotrophicum MCM,” Journal of Biological Chemistry, vol. 280, no. 51, pp. 42405–42410, 2005.
[26]
R. J. Fletcher, J. Shen, L. G. Holden, and X. S. Chen, “Identification of amino acids important for the biochemical activity of Methanothermobacter thermautotrophicus MCM,” Biochemistry, vol. 47, no. 38, pp. 9981–9986, 2008.
[27]
E. Rothenberg, M. A. Trakselis, S. D. Bell, and T. Ha, “MCM forked substrate specificity involves dynamic interaction with the 5′-tail,” Journal of Biological Chemistry, vol. 282, no. 47, pp. 34229–34234, 2007.
[28]
A. Costa, G. van Duinen, B. Medagli et al., “Cryo-electron microscopy reveals a novel DNA-binding site on the MCM helicase,” EMBO Journal, vol. 27, no. 16, pp. 2250–2258, 2008.