全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Archaea  2010 

Hot Transcriptomics

DOI: 10.1155/2010/897585

Full-Text   Cite this paper   Add to My Lib

Abstract:

DNA microarray technology allows for a quick and easy comparison of complete transcriptomes, resulting in improved molecular insight in fluctuations of gene expression. After emergence of the microarray technology about a decade ago, the technique has now matured and has become routine in many molecular biology laboratories. Numerous studies have been performed that have provided global transcription patterns of many organisms under a wide range of conditions. Initially, implementation of this high-throughput technology has lead to high expectations for ground breaking discoveries. Here an evaluation is performed of the insight that transcriptome analysis has brought about in the field of hyperthermophilic archaea. The examples that will be discussed have been selected on the basis of their impact, in terms of either biological insight or technological progress. 1. Thermophiles Forty years ago it was generally accepted that life was not possible at temperatures higher than 60°C. In 1969, however, Brock and Freeze discovered that the upper temperature limit goes as high as 75°C when microorganisms were isolated from thermal springs in Yellowstone National Park [1, 2]. The pioneering work of Brock set the stage for further exploration of a wide range of thermal ecosystems. Numerous microorganisms defined as thermophiles have since been found to thrive optimally between 50 and 80°C, but also many appeared to have their optimal temperature for growth from 80°C to well above 100°C, the hyperthermophiles. Recently it has been shown that some archaea can endure temperatures as high as 122°C and even proliferate in such conditions. Although there are several bacterial representatives in the group as well, most of the known hyperthermophiles belong to the archaea. Thermophilic organisms can be found in water-containing geothermally heated environments. These volcanic ecosystems are mainly situated along terrestrial and submarine fracture zones where tectonic plates are converging or diverging. The terrestrial biotopes of (hyper)thermophiles are mainly aerobic, sulfur containing solfataric fields with temperature as high as 100°C (depending on the altitude) and the pH in a dual range: either acidic (values from below zero to 4.0 [3]) or neutral to slightly alkali (7.0–9.0) [4]. The marine biotopes for (hyper)thermophiles consist of different hydrothermal systems ranging from shallow to abyssal depths. Temperatures in those anaerobic environments can range up to 400°C and the pH is usually in the range of 5.0 to 8.5. Progress in culturing thermophilic archaea and

References

[1]  T. D. Brock and H. Freeze, “Thermus aquaticus gen. n. and sp. n., a nonsporulating extreme thermophile,” Journal of Bacteriology, vol. 98, no. 1, pp. 289–297, 1969.
[2]  K. O. Stetter, “Hyperthermophiles in the history of life,” Philosophical Transactions of the Royal Society B, vol. 361, no. 1474, pp. 1837–1842, 2006.
[3]  A. Angelov and W. Liebl, “Insights into extreme thermoacidophily based on genome analysis of Picrophilus torridus and other thermoacidophilic archaea,” Journal of Biotechnology, vol. 126, no. 1, pp. 3–10, 2006.
[4]  A. H. Segerer, S. Burggraf, G. Fiala et al., “Life in hot springs and hydrothermal vents,” Origins of Life and Evolution of the Biosphere, vol. 23, no. 1, pp. 77–90, 1993.
[5]  T. J. G. Ettema, W. M. de Vos, and J. van der Oost, “Discovering novel biology by in silico archaeology,” Nature Reviews Microbiology, vol. 3, no. 11, pp. 859–869, 2005.
[6]  K. S. Makarova and E. V. Koonin, “Comparative genomics of archaea: how much have we learned in six years, and what's next?” Genome Biology, vol. 4, no. 8, article 115, 2003.
[7]  S. J. J. Brouns, J. Walther, A. P. L. Snijders et al., “Identification of the missing links in prokaryotic pentose oxidation pathways: evidence for enzyme recruitment,” Journal of Biological Chemistry, vol. 281, no. 37, pp. 27378–27388, 2006.
[8]  C. Cambillau and J. M. Claverie, “Structural and genomic correlates of hyperthermostability,” Journal of Biological Chemistry, vol. 275, no. 42, pp. 32383–32386, 2000.
[9]  S. Koutsopoulos, J. Van Der Oost, and W. Norde, “Kinetically controlled refolding of a heat-denatured hyperthermostable protein,” FEBS Journal, vol. 274, no. 22, pp. 5915–5923, 2007.
[10]  S. Kumar and R. Nussinov, “How do thermophilic proteins deal with heat?” Cellular and Molecular Life Sciences, vol. 58, no. 9, pp. 1216–1233, 2001.
[11]  M. C. Rivera and J. A. Lake, “The ring of life provides evidence for a genome fusion origin of eukaryotes,” Nature, vol. 431, no. 7005, pp. 152–155, 2004.
[12]  C. J. Bult, O. White, G. J. Olsen et al., “Complete genome sequence of the Methanogenic archaeon, Methanococcus jannaschii,” Science, vol. 273, no. 5278, pp. 1058–1073, 1996.
[13]  K. E. Nelson, R. A. Clayton, S. R. Gill et al., “Evidence for lateral gene transfer between archaea and bacteria from genome sequence of Thermotoga maritima,” Nature, vol. 399, no. 6734, pp. 323–329, 1999.
[14]  E. V. Koonin, Y. I. Wolf, and L. Aravind, “Prediction of the archeal exosome and its connections with the proteasome and the translation and transcription machineries by a comparative-genomic approach,” Genome Research, vol. 11, no. 2, pp. 240–252, 2001.
[15]  T. Ettema, J. Van der Oost, and M. Huynen, “Modularity in the gain and loss of genes: applications for function prediction,” Trends in Genetics, vol. 17, no. 9, pp. 485–487, 2001.
[16]  T. Frickey and A. N. Lupas, “PhyloGenie: automated phylome generation and analysis,” Nucleic Acids Research, vol. 32, no. 17, pp. 5231–5238, 2004.
[17]  A. Ruepp, W. Graml, M. L. Santos-Martinez et al., “The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum,” Nature, vol. 407, no. 6803, pp. 508–513, 2000.
[18]  T. Doerks, C. von Mering, and P. Bork, “Functional clues for hypothetical proteins based on genomic context analysis in prokaryotes,” Nucleic Acids Research, vol. 32, no. 21, pp. 6321–6326, 2004.
[19]  G. Ramsay, “DNA chips: state-of-the art,” Nature Biotechnology, vol. 16, no. 1, pp. 40–44, 1998.
[20]  M. Lundgren and R. Bernander, “Genome-wide transcription map of an archaeal cell cycle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 8, pp. 2939–2944, 2007.
[21]  K. S. Auernik and R. M. Kelly, “Physiological versatility of the extremely thermoacidophilic archaeon metallosphaera sedula supported by transcriptomic analysis of heterotrophic, autotrophic, and mixotrophic growth,” Applied and Environmental Microbiology, vol. 76, no. 3, pp. 931–935, 2010.
[22]  S. A. Trauger, E. Kalisak, J. Kalisiak et al., “Correlating the transcriptome, proteome, and metabolome in the environmental adaptation of a hyperthermophile,” Journal of Proteome Research, vol. 7, no. 3, pp. 1027–1035, 2008.
[23]  S. V. Albers, N. K. Birkeland, A. J. M. Driessen et al., “SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation,” Biochemical Society Transactions, vol. 37, no. 1, pp. 58–64, 2009.
[24]  G. J. Schut, J. Zhou, and M. W. W. Adams, “DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus: evidence for a new type of sulfur-reducing enzyme complex,” Journal of Bacteriology, vol. 183, no. 24, pp. 7027–7036, 2001.
[25]  N. S. Baliga, M. Pan, Y. Goo et al., “Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach,” Proceedings of the National Academy of Sciences of the United States of America, vol. 99, no. 23, pp. 14913–14918, 2002.
[26]  A. Zaigler, S. C. Schuster, and J. Soppa, “Construction and usage of a onefold-coverage shotgun DNA microarray to characterize the metabolism of the archaeon Haloferax volcanii,” Molecular Microbiology, vol. 48, no. 4, pp. 1089–1105, 2003.
[27]  G. J. Schut, S. D. Brehm, S. Datta, and M. W. W. Adams, “Whole-genome DNA microarray analysis of a hyperthermophile and an archaeon: pyrococcus furiosus grown on carbohydrates or peptides,” Journal of Bacteriology, vol. 185, no. 13, pp. 3935–3947, 2003.
[28]  J. A. Müller and S. DasSarma, “Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp. strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors,” Journal of Bacteriology, vol. 187, no. 5, pp. 1659–1667, 2005.
[29]  R. Hovey, S. Lentes, A. Ehrenreich et al., “DNA microarray analysis of Methanosarcina mazei G?1 reveals adaptation to different methanogenic substrates,” Molecular Genetics and Genomics, vol. 273, no. 3, pp. 225–239, 2005.
[30]  A. P. L. Snijders, J. Walther, S. Peter et al., “Reconstruction of central carbon metabolism in Sulfolobus solfataricus using a two-dimensional gel electrophoresis map, stable isotope labelling and DNA microarray analysis,” Proteomics, vol. 6, no. 5, pp. 1518–1529, 2006.
[31]  D. E. Culley, W. P. Kovacik, F. J. Brockman, and W. Zhang, “Optimization of RNA isolation from the archaebacterium Methanosarcina barkeri and validation for oligonucleotide microarray analysis,” Journal of Microbiological Methods, vol. 67, no. 1, pp. 36–43, 2006.
[32]  K. Veit, C. Ehlers, A. Ehrenreich et al., “Global transcriptional analysis of Methanosarcina mazei strain G?1 under different nitrogen availabilities,” Molecular Genetics and Genomics, vol. 276, no. 1, pp. 41–55, 2006.
[33]  H. S. Lee, K. R. Shockley, G. J. Schut et al., “Transcriptional and biochemical analysis of starch metabolism in the hyperthermophilic archaeon Pyrococcus furiosus,” Journal of Bacteriology, vol. 188, no. 6, pp. 2115–2125, 2006.
[34]  G. J. Schut, S. L. Bridger, and M. W. W. Adams, “Insights into the metabolism of elemental sulfur by the hyperthermophilic archaeon Pyrococcus furiosus: characterization of a coenzyme A-dependent NAD(P)H sulfur oxidoreductase,” Journal of Bacteriology, vol. 189, no. 12, pp. 4431–4441, 2007.
[35]  J. Twellmeyer, A. Wende, J. Wolfertz et al., “Microarray analysis in the archaeon Halobacterium salinarum strain R1,” PLoS ONE, vol. 2, no. 10,article e1064, 2007.
[36]  L. Li, Q. Li, L. Rohlin et al., “Quantitative proteomic and microarray analysis of the archaeon Methanosarcina acetivorans grown with acetate versus methanol,” Journal of Proteome Research, vol. 6, no. 2, pp. 759–771, 2007.
[37]  J. J. Rich, O. R. Dale, B. Song, and B. B. Ward, “Anaerobic ammonium oxidation (anammox) in Chesapeake Bay sediments,” Microbial Ecology, vol. 55, no. 2, pp. 311–320, 2008.
[38]  K. S. Auernik and R. M. Kelly, “Identification of components of electron transport chains in the extremely thermoacidophilic crenarchaeon Metallosphaera sedula through iron and sulfur compound oxidation transcriptomes,” Applied and Environmental Microbiology, vol. 74, no. 24, pp. 7723–7732, 2008.
[39]  J. G. Ferry and D. J. Lessner, “Methanogenesis in marine sediments,” Annals of the New York Academy of Sciences, vol. 1125, pp. 147–157, 2008.
[40]  A. E. Cozen, M. T. Weirauch, K. S. Pollard, D. L. Bernick, J. M. Stuart, and T. M. Lowe, “Transcriptional map of respiratory versatility in the hyperthermophilic crenarchaeon Pyrobaculum aerophilum,” Journal of Bacteriology, vol. 191, no. 3, pp. 782–794, 2009.
[41]  M. Zaparty, B. Tjaden, R. Hensel, and B. Siebers, “The central carbohydrate metabolism of the hyperthermophilic crenarchaeote Thermoproteus tenax: pathways and insights into their regulation,” Archives of Microbiology, vol. 190, no. 3, pp. 231–245, 2008.
[42]  A. Wende, K. Furtw?ngler, and D. Oesterhelt, “Phosphate-dependent behavior of the archaeon Halobacterium salinarum strain R1,” Journal of Bacteriology, vol. 191, no. 12, pp. 3852–3860, 2009.
[43]  A. K. Schmid, D. J. Reiss, M. Pan, T. Koide, and N. S. Baliga, “A single transcription factor regulates evolutionarily diverse but functionally linked metabolic pathways in response to nutrient availability,” Molecular Systems Biology, vol. 5, article 282, 2009.
[44]  U. Johnsen, M. Dambeck, H. Zaiss et al., “D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii,” Journal of Biological Chemistry, vol. 284, no. 40, pp. 27290–27303, 2009.
[45]  D. J?ger, C. M. Sharma, J. Thomsen, C. Ehlers, J. Vogel, and R. A. Schmitz, “Deep sequencing analysis of the Methanosarcina mazei G? 1 transcriptome in response to nitrogen availability,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 51, pp. 21878–21882, 2009.
[46]  K. S. Auernik and R. M. Kelly, “Impact of molecular hydrogen on chalcopyrite bioleaching by the extremely thermoacidophilic archaeon Metallosphaera sedala,” Applied and Environmental Microbiology, vol. 76, no. 8, pp. 2668–2672, 2010.
[47]  K. R. Shockley, D. E. Ward, S. R. Chhabra, S. B. Conners, C. I. Montero, and R. M. Kelly, “Heat shock response by the hyperthermophilic archaeon Pyrococcus furiosus,” Applied and Environmental Microbiology, vol. 69, no. 4, pp. 2365–2371, 2003.
[48]  M. V. Weinberg, G. J. Schut, S. Brehm, S. Datta, and M. W. W. Adams, “Cold shock of a hyperthermophilic archaeon: pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins,” Journal of Bacteriology, vol. 187, no. 1, pp. 336–348, 2005.
[49]  S. McCready, et al., “UV irradiation induces homologous recombination genes in the model archaeon, Halobacterium sp. NRC-1,” Saline Systems, vol. 1, p. 3, 2005.
[50]  B. B. Boonyaratanakornkit, A. J. Simpson, T. A. Whitehead, C. M. Fraser, N. M. A. El-Sayed, and D. S. Clark, “Transcriptional profiling of the hyperthermophilic methanarchaeon Methanococcus jannaschii in response to lethal heat and non-lethal cold shock,” Environmental Microbiology, vol. 7, no. 6, pp. 789–797, 2005.
[51]  W. Zhang, D. E. Culley, L. Nie, and F. J. Brockman, “DNA microarray analysis of anaerobic Methanosarcina barkeri reveals responses to heat shock and air exposure,” Journal of Industrial Microbiology and Biotechnology, vol. 33, no. 9, pp. 784–790, 2006.
[52]  B. Boonyaratanakornkit, J. Córdova, C. B. Park, and D. S. Clark, “Pressure affects transcription profiles of Methanocaldococcus jannaschii despite the absence of barophilic growth under gas-transfer limitation,” Environmental Microbiology, vol. 8, no. 11, pp. 2031–2035, 2006.
[53]  E. Williams, T. M. Lowe, J. Savas, and J. DiRuggiero, “Microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus exposed to gamma irradiation,” Extremophiles, vol. 11, no. 1, pp. 19–29, 2007.
[54]  K. Pflüger, A. Ehrenreich, K. Salmon et al., “Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei G?1 using genome-wide gene expression profiling,” FEMS Microbiology Letters, vol. 277, no. 1, pp. 79–89, 2007.
[55]  E. L. Hendrickson, A. K. Haydock, B. C. Moore, W. B. Whitman, and J. A. Leigh, “Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 21, pp. 8930–8934, 2007.
[56]  J. A. Coker, P. DasSarma, J. Kumar, J. A. Müller, and S. DasSarma, “Transcriptional profiling of the model Archaeon Halobacterium sp. NRC-I: responses to changes in salinity and temperature,” Saline Systems, vol. 3, no. 1, pp. 1–17, 2007.
[57]  S. Fr?ls, P. M. K. Gordon, M. A. Panlilio et al., “Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage,” Journal of Bacteriology, vol. 189, no. 23, pp. 8708–8718, 2007.
[58]  R. Dorazi, D. G?tz, S. Munro, R. Bernander, and M. F. White, “Equal rates of repair of DNA photoproducts in transcribed and non-transcribed strands in Sulfolobus solfataricus,” Molecular Microbiology, vol. 63, no. 2, pp. 521–529, 2007.
[59]  S. Tachdjian and R. M. Kelly, “Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus,” Journal of Bacteriology, vol. 188, no. 12, pp. 4553–4559, 2006.
[60]  G. Simon, J. Walther, N. Zabeti et al., “Effect of O concentrations on Sulfolobus solfataricus P2,” FEMS Microbiology Letters, vol. 299, no. 2, pp. 255–260, 2009.
[61]  R. D. Kirkpatrick, “Something old, something new, something borrowed...something blue,” Tennessee Medicine, vol. 103, no. 8, pp. 7–8, 2010.
[62]  S. Campanaro, et al., “Temperature-dependent global gene expression in theAntarctic archaeon Methanococcoides burtonii,” Environmental Microbiology. In press.
[63]  T. Kanai, S. Takedomi, S. Fujiwara, H. Atomi, and T. Imanaka, “Identification of the Phr-dependent heat shock regulon in the hyperthermophilic archaeon, Thermococcus kodakaraensis,” Journal of Biochemistry, vol. 147, no. 3, pp. 361–370, 2010.
[64]  A. M. Keese, G. J. Schut, M. Ouhammouch, M. W. W. Adams, and M. Thomm, “Genome-wide identification of targets for the archaeal heat shock regulator Phr by cell-free transcription of genomic DNA,” Journal of Bacteriology, vol. 192, no. 5, pp. 1292–1298, 2010.
[65]  C. R. Cooper, A. J. Daugherty, S. Tachdjian, P. H. Blum, and R. M. Kelly, “Role of vapBC toxin-antitoxin loci in the thermal stress response of Sulfolobus solfataricus,” Biochemical Society Transactions, vol. 37, no. 1, pp. 123–126, 2009.
[66]  K. R. Strand, C. Sun, T. Li, F. E. Jenney, G. J. Schut, and M. W. W. Adams, “Oxidative stress protection and the repair response to hydrogen peroxide in the hyperthermophilic archaeon Pyrococcus furiosus and in related species,” Archives of Microbiology, vol. 192, no. 6, pp. 447–459, 2010.
[67]  C. J. Shih and M. C. Lai, “Differentially expressed genes after hyper- and hypo-salt stress in the halophilic archaeon Methanohalophilus portucalensis,” Canadian Journal of Microbiology, vol. 56, no. 4, pp. 295–307, 2010.
[68]  M. Lundgren, A. Andersson, L. Chen, P. Nilsson, and R. Bernander, “Three replication origins in Sulfolobus species: synchronous initiation of chromosome replication and asynchronous termination,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 18, pp. 7046–7051, 2004.
[69]  A. Baumann, C. Lange, and J. Soppa, “Transcriptome changes and cAMP oscillations in an archaeal cell cycle,” BMC Cell Biology, vol. 8, article 21, 2007.
[70]  F. Matsunaga, A. Glatigny, M. E. Mucchielli-Giorgi et al., “Genomewide and biochemical analyses of DNA-binding activity of Cdc6/Orc1 and Mcm proteins in Pyrococcus sp,” Nucleic Acids Research, vol. 35, no. 10, pp. 3214–3222, 2007.
[71]  N. Stralis-Pavese, A. Sessitsch, A. Weilharter et al., “Optimization of diagnostic microarray for application in analysing landfill methanotroph communities under different plant covers,” Environmental Microbiology, vol. 6, no. 4, pp. 347–363, 2004.
[72]  S. D. Hamilton-Brehm, G. J. Schut, and M. W. W. Adams, “Metabolic and evolutionary relationships among Pyrococcus species: genetic exchange within a hydrothermal vent environment,” Journal of Bacteriology, vol. 187, no. 21, pp. 7492–7499, 2005.
[73]  A. F. Andersson, M. Lundgren, S. Eriksson, M. Rosenlund, R. Bernander, and P. Nilsson, “Global analysis of mRNA stability in the archaeon Sulfolobus,” Genome Biology, vol. 7, no. 10, article R99, 2006.
[74]  Q. Xia, E. L. Hendrickson, Y. Zhang et al., “Quantitative proteomics of the archaeon Methanococcus maripaludis validated by microarray analysis and real time PCR,” Molecular and Cellular Proteomics, vol. 5, no. 5, pp. 868–881, 2006.
[75]  C. Lange, A. Zaigler, M. Hammelmann et al., “Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea,” BMC Genomics, vol. 8, article 415, 2007.
[76]  T. Kanai, J. Akerboom, S. Takedomi et al., “A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes,” Journal of Biological Chemistry, vol. 282, no. 46, pp. 33659–33670, 2007.
[77]  T. J. Santangelo, L. ?uboňová, R. Matsumi, H. Atomi, T. Imanaka, and J. N. Reeve, “Polarity in archaeal operon transcription in Thermococcus kodakaraensis,” Journal of Bacteriology, vol. 190, no. 6, pp. 2244–2248, 2008.
[78]  M. Dambeck and J. Soppa, “Characterization of a Haloferax volcanii member of the enolase superfamily: deletion mutant construction, expression analysis, and transcriptome comparison,” Archives of Microbiology, vol. 190, no. 3, pp. 341–353, 2008.
[79]  P. Garrido, E. González-Toril, A. García-Moyano, M. Moreno-Paz, R. Amils, and V. Parro, “An oligonucleotide prokaryotic acidophile microarray: its validation and its use to monitor seasonal variations in extreme acidic environments with total environmental RNA,” Environmental Microbiology, vol. 10, no. 4, pp. 836–850, 2008.
[80]  A. C. Ortmann, S. K. Brumfield, J. Walther et al., “Transcriptome analysis of infection of the archaeon Sulfolobus solfataricus with Sulfolobus turreted icosahedral virus,” Journal of Virology, vol. 82, no. 10, pp. 4874–4883, 2008.
[81]  D. W. Grogan, M. A. Ozarzak, and R. Bernander, “Variation in gene content among geographically diverse Sulfolobus isolates,” Environmental Microbiology, vol. 10, no. 1, pp. 137–146, 2008.
[82]  A. F. Andersson, E. A. Pelve, S. Lindeberg, M. Lundgren, P. Nilsson, and R. Bernander, “Replication-biased genome organisation in the crenarchaeon Sulfolobus,” BMC Genomics, vol. 11, no. 1, article 454, 2010.
[83]  O. Wurtzel, R. Sapra, F. Chen, Y. Zhu, B. A. Simmons, and R. Sorek, “A single-base resolution map of an archaeal transcriptome,” Genome Research, vol. 20, no. 1, pp. 133–141, 2010.
[84]  E. Yergeau, S. A. Schoondermark-Stolk, E. L. Brodie et al., “Environmental microarray analyses of Antarctic soil microbial communities,” ISME Journal, vol. 3, no. 3, pp. 340–351, 2009.
[85]  M. J. Reichlen, K. S. Murakami, and J. G. Ferry, “Functional analysis of the three TATA binding protein homologs in Methanosarcina acetivorans,” Journal of Bacteriology, vol. 192, no. 6, pp. 1511–1517, 2010.
[86]  R. Schwaiger, C. Schwarz, K. Furtw?ngler, V. Tarasov, A. Wende, and D. Oesterhelt, “Transcriptional control by two leucine-responsive regulatory proteins in Halobacterium salinarum R1,” BMC Molecular Biology, vol. 11, article 40, 2010.
[87]  M. T. Facciotti, W. L. Pang, F. Y. Lo et al., “Large scale physiological readjustment during growth enables rapid, comprehensive and inexpensive systems analysis,” BMC Systems Biology, vol. 4, article 64, 2010.
[88]  M. Goberna, M. Gadermaier, C. García, B. Wett, and H. Insam, “Adaptation of methanogenic communities to the cofermentation of cattle excreta and olive mill wastes at C and c,” Applied and Environmental Microbiology, vol. 76, no. 19, pp. 6564–6571, 2010.
[89]  J. Jacob Parnell, G. Rompato, L. C. Latta IV et al., “Functional biogeography as evidence of gene transfer in hypersaline microbial communities,” PLoS ONE, vol. 5, no. 9, article e12919, 2010.
[90]  J. van de Peppel, P. Kemmeren, H. van Bakel, M. Radonjic, D. van Leenen, and F. C. P. Holstege, “Monitoring global messenger RNA changes in externally controlled microarray experiments,” EMBO Reports, vol. 4, no. 4, pp. 387–393, 2003.
[91]  H. Santos and M. S. Da Costa, “Compatible solutes of organisms that live in hot saline environments,” Environmental Microbiology, vol. 4, no. 9, pp. 501–509, 2002.
[92]  H. K. Kagawa, T. Yaoi, L. Brocchieri, R. A. McMillan, T. Alton, and J. D. Trent, “The composition, structure and stability of a group II chaperonin are temperature regulated in a hyperthermophilic archaeon,” Molecular Microbiology, vol. 48, no. 1, pp. 143–156, 2003.
[93]  W. S. A. Maaty, A. C. Ortmann, M. Dlaki? et al., “Characterization of the archaeal thermophile Sulfolobus turreted icosahedral virus validates an evolutionary link among double-stranded DNA viruses from all domains of life,” Journal of Virology, vol. 80, no. 15, pp. 7625–7635, 2006.
[94]  P. Palm, C. Schleper, B. Grampp et al., “Complete nucleotide sequence of the virus SSV1 of the archaebacterium Sulfolobus shibatae,” Virology, vol. 185, no. 1, pp. 242–250, 1991.
[95]  T. J. G. Ettema and R. Bernander, “Cell division and the ESCRT complex: a surprise from the archaea,” Communitative and Integrative Biology, vol. 2, no. 2, pp. 86–88, 2009.
[96]  R. Y. Samson and S. D. Bell, “Ancient ESCRTs and the evolution of binary fission,” Trends in Microbiology, vol. 17, no. 11, pp. 507–513, 2009.
[97]  S. K. Brumfield, A. C. Ortmann, V. Ruigrok, P. Suci, T. Douglas, and M. J. Young, “Particle assembly and ultrastructural features associated with replication of the lytic archaeal virus Sulfolobus turreted icosahedral virus,” Journal of Virology, vol. 83, no. 12, pp. 5964–5970, 2009.
[98]  A. Bize, E. A. Karlsson, K. Ekefj?rd et al., “A unique virus release mechanism in the Archaea,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 27, pp. 11306–11311, 2009.
[99]  S. Fr?ls, P. M. K. Gordon, M. A. Panlilio et al., “Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage,” Journal of Bacteriology, vol. 189, no. 23, pp. 8708–8718, 2007.
[100]  C. Schleper, K. Kubo, and W. Zillig, “The particle SSV1 from the extremely thermophilic archaeon Sulfolobus is a virus: demonstration of infectivity and of transfection with viral DNA,” Proceedings of the National Academy of Sciences of the United States of America, vol. 89, no. 16, pp. 7645–7649, 1992.
[101]  M. R. Johnson, S. B. Conners, C. I. Montero, C. J. Chou, K. R. Shockley, and R. M. Kelly, “The Thermotoga maritima phenotype is impacted by syntrophic interaction with Methanococcus jannaschii in hyperthermophilic coculture,” Applied and Environmental Microbiology, vol. 72, no. 1, pp. 811–818, 2006.
[102]  V. Muralidharan, K. D. Rinker, I. S. Hirsh, E. J. Bouwer, and R. M. Kelly, “Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures,” Biotechnology and Bioengineering, vol. 56, no. 3, pp. 268–278, 1997.
[103]  H. Myllykallio, P. Lopez, P. López-García et al., “Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon,” Science, vol. 288, no. 5474, pp. 2212–2215, 2000.
[104]  N. P. Robinson, I. Dionne, M. Lundgren, V. L. Marsh, R. Bernander, and S. D. Bell, “Identification of two origins of replication in the single chromosome of the archaeon Sulfolobus solfataricus,” Cell, vol. 116, no. 1, pp. 25–38, 2004.
[105]  P. Contursi, F. M. Pisani, A. Grigoriev, R. Cannio, S. Bartolucci, and M. Rossi, “Identification and autonomous replication capability of a chromosomal replication origin from the archaeon Sulfolobus solfataricus,” Extremophiles, vol. 8, no. 5, pp. 385–391, 2004.
[106]  H. Myllykallio and P. Forterre, “Mapping of a chromosome replication origin in an archaeon: response,” Trends in Microbiology, vol. 8, no. 12, pp. 537–539, 2000.
[107]  N. P. Robinson and S. D. Bell, “Extrachromosomal element capture and the evolution of multiple replication origins in archaeal chromosomes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 14, pp. 5806–5811, 2007.
[108]  S. Maisnier-Patin, L. Malandrin, N. K. Birkeland, and R. Bernander, “Chromosome replication patterns in the hyperthermophilic euryarchaea Archaeoglobus fulgidus and Methanocaldococcus (Methanococcus) jannaschii,” Molecular Microbiology, vol. 45, no. 5, pp. 1443–1450, 2002.
[109]  K. S. Makarova, N. Yutin, S. D. Bell, and E. V. Koonin, “Evolution of diverse cell division and vesicle formation systems in Archaea,” Nature Reviews Microbiology, vol. 8, no. 10, pp. 731–741, 2010.
[110]  R. Y. Samson, T. Obita, S. M. Freund, R. L. Williams, and S. D. Bell, “A role for the ESCRT system in cell division in archaea,” Science, vol. 322, no. 5908, pp. 1710–1713, 2008.
[111]  R. L. Anderson and A. S. Dahms, “2-Keto-3-deoxy-l-arabonate aldolase,” Methods in Enzymology, vol. 42, pp. 269–272, 1975.
[112]  I. G. Duggin, S. A. McCallum, and S. D. Bell, “Chromosome replication dynamics in the archaeon Sulfolobus acidocaldarius,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 43, pp. 16737–16742, 2008.
[113]  D. G?tz, S. Paytubi, S. Munro, M. Lundgren, R. Bernander, and M. F. White, “Responses of hyperthermophilic crenarchaea to UV irradiation,” Genome Biology, vol. 8, no. 10, article R220, 2007.
[114]  B. G. Mirkin, T. I. Fenner, M. Y. Galperin, and E. V. Koonin, “Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes,” BMC Evolutionary Biology, vol. 3, no. 1, article 2, p. 2, 2003.
[115]  C. E.M. Nunn, U. Johnsen, P. Sch?nheit et al., “Metabolism of pentose sugars in the hyperthermophilic archaea Sulfolobus solfataricus and Sulfolobus acidocaldarius,” Journal of Biological Chemistry, vol. 285, no. 44, pp. 33701–33709, 2010.
[116]  H. van de Werken, S. Brouns, and J. van der Oost, “Pentose metabolism in archaea,” in Archaea: New Models for Prokaryotic Biology, p. 71, 2008.
[117]  S. Berkner, A. Wlodkowski, S. V. Albers, and G. Lipps, “Inducible and constitutive promoters for genetic systems in Sulfolobus acidocaldarius,” Extremophiles, vol. 14, no. 3, pp. 249–259, 2010.
[118]  T. Kanai, J. Akerboom, S. Takedomi et al., “A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes,” Journal of Biological Chemistry, vol. 282, no. 46, pp. 33659–33670, 2007.
[119]  M. Margulies, M. Egholm, W. E. Altman et al., “Genome sequencing in microfabricated high-density picolitre reactors,” Nature, vol. 437, no. 7057, pp. 376–380, 2005.
[120]  S. Bennett, “Solexa Ltd,” Pharmacogenomics, vol. 5, no. 4, pp. 433–438, 2004.
[121]  B. T. Wilhelm and J. R. Landry, “RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing,” Methods, vol. 48, no. 3, pp. 249–257, 2009.
[122]  Q. She, R. K. Singh, F. Confalonieri et al., “The complete genome of the crenarchaeon Sulfolobus solfataricus P2,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 14, pp. 7835–7840, 2001.
[123]  L. S. Waters and G. Storz, “Regulatory RNAs in bacteria,” Cell, vol. 136, no. 4, pp. 615–628, 2009.
[124]  R. Bonneau, M. T. Facciotti, D. J. Reiss et al., “A predictive model for transcriptional control of physiology in a free living cell,” Cell, vol. 131, no. 7, pp. 1354–1365, 2007.
[125]  M. Zaparty, D. Esser, S. Gertig et al., “"Hot standards" for the thermoacidophilic archaeon Sulfolobus solfataricus,” Extremophiles, vol. 14, no. 1, pp. 119–142, 2009.
[126]  I. R. Booth, “SysMO: back to the future,” Nature Reviews Microbiology, vol. 5, no. 8, p. 566, 2007.
[127]  A. Brazma, P. Hingamp, J. Quackenbush et al., “Minimum information about a microarray experiment (MIAME)—toward standards for microarray data,” Nature Genetics, vol. 29, no. 4, pp. 365–371, 2001.
[128]  T. C. Mockler and J. R. Ecker, “Applications of DNA tiling arrays for whole-genome analysis,” Genomics, vol. 85, no. 1, pp. 1–15, 2005.
[129]  J. A. Gilbert, D. Field, Y. Huang et al., “Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities,” PLoS ONE, vol. 3, no. 8, article e3042, 2008.
[130]  T. T. Torres, M. Metta, B. Ottenw?lder, and C. Schl?tterer, “Gene expression profiling by massively parallel sequencing,” Genome Research, vol. 18, no. 1, pp. 172–177, 2008.
[131]  Z. Wang, M. Gerstein, and M. Snyder, “RNA-Seq: a revolutionary tool for transcriptomics,” Nature Reviews Genetics, vol. 10, no. 1, pp. 57–63, 2009.
[132]  H. Ledford, “The death of microarrays?” Nature, vol. 455, no. 7215, p. 847, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133