全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Pleasant/Unpleasant Filtering for Affective Image Retrieval Based on Cross-Correlation of EEG Features

DOI: 10.1155/2014/415187

Full-Text   Cite this paper   Add to My Lib

Abstract:

People often make decisions based on sensitivity rather than rationality. In the field of biological information processing, methods are available for analyzing biological information directly based on electroencephalogram: EEG to determine the pleasant/unpleasant reactions of users. In this study, we propose a sensitivity filtering technique for discriminating preferences (pleasant/unpleasant) for images using a sensitivity image filtering system based on EEG. Using a set of images retrieved by similarity retrieval, we perform the sensitivity-based pleasant/unpleasant classification of images based on the affective features extracted from images with the maximum entropy method: MEM. In the present study, the affective features comprised cross-correlation features obtained from EEGs produced when an individual observed an image. However, it is difficult to measure the EEG when a subject visualizes an unknown image. Thus, we propose a solution where a linear regression method based on canonical correlation is used to estimate the cross-correlation features from image features. Experiments were conducted to evaluate the validity of sensitivity filtering compared with image similarity retrieval methods based on image features. We found that sensitivity filtering using color correlograms was suitable for the classification of preferred images, while sensitivity filtering using local binary patterns was suitable for the classification of unpleasant images. Moreover, sensitivity filtering using local binary patterns for unpleasant images had a 90% success rate. Thus, we conclude that the proposed method is efficient for filtering unpleasant images. 1. Introduction Thanks to recent improvements in the processing speed of computers and the sophistication of information retrieval algorithms, it is possible to retrieve relevant information from huge databases in an efficient manner. However, many retrieval systems cannot perform their tasks at a level that satisfies the user’s needs. Thus, there is a need for an information retrieval system that satisfies the tastes of users. In general, user tastes (preferences) can be predicted from the results of polls completed by users or based on the utilization status of the system. A considerable amount of researches has been conducted to predict preference information from web browsing histories, past Internet purchases, and so forth [1–6]. However, the web browsing history does not necessarily reflect the preferences of users, because the amount of interest also depends on the objectives of browsing or purchasing. Thus,

References

[1]  Y. Hijikata, “Techniques of preference extraction for information recommendation,” IPSJ Magazine, vol. 48, no. 9, pp. 957–965, 2007.
[2]  Y. Kawai, J. Zhang, and H. Kawasaki, “Tour recommendation system based on web information and GIS,” in IEEE International Conference on Multimedia and Expo (ICME' 09), pp. 990–993, 2009.
[3]  B. Sarwar, G. Karypis, J. Konstan, and L. Riedl, “Item-based collaborative filtering recommendation algorithms,” in Proceedings of the 10th International Conference on World Wide Web (WWW' 01), pp. 285–295, Hong Kong, China, 2001.
[4]  G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions,” IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6, pp. 734–749, 2005.
[5]  S. Middleton, N. Shadbolt, and D. Roure, “Capturinng interest through inference and visualization: ontological user profiling in recommender systems,” in Proceedings of the 2nd International Conference on Knowledge Capture, pp. 62–69, 2003.
[6]  J. Pragarauskaite and G. Dzemyda, “Visual decisions in the analysis of customers online shopping behavior,” Nonlinear Analysis: Modelling and Control, vol. 17, no. 3, pp. 355–368, 2012.
[7]  F. Dolcos and R. Cabeza, “Event-related potentials of emotional memory: encoding pleasant, unpleasant, and neutral pictures,” Cognitive, Affective & Behavioral Neuroscience, vol. 2, no. 3, pp. 252–263, 2002.
[8]  Y. Mitsukura, “Can we detect the preference by the EEG,” The Journal of the Institute of Electrical Engineers of Japan, vol. 130, no. 6, pp. 352–355, 2010.
[9]  H. Fukai, Y. Tomita, and Y. Mitsukura, “A design of the preference acquisition detection system using the EEG,” Journal of Intelligent Information Systems, vol. 2, no. 1, pp. 19–25, 2013.
[10]  N. Utsunomiya, H. Tanaka, and H. Ide, “Construction of pleasantness emotion matrix by the correlation coefficients of EEG,” IEEJ Transactions on Industry Applications, vol. 122, no. 2, pp. 309–311, 2002.
[11]  T. Musha, “Feature extraction from EEGs associated with emotions,” Artificial Life and Robotics, vol. 1, no. 1, pp. 15–19, 1997.
[12]  M. Murugappan, M. Rizon, R. Nagarajan, S. Yaacob, I. Zunaidi, and D. Hazry, “EEG feature extraction for classifying emotions using FCM and FKM,” International Journal of Computers and Communications, vol. 1, no. 2, pp. 21–25, 2007.
[13]  S. Ito, Y. Mitsukura, and M. Fukumi, “A model for extracting personal features of an electroencephalogram and its evaluation method,” IEEJ Transactions on Electronics, Information and Systems, vol. 129, no. 1, pp. 17–24, 2009.
[14]  A. L. Berger, S. A. D. Pietra, and V. J. D. Pietra, “A Maximum entropy approach to natural language modeling,” Computational Linguistics, vol. 22, no. 1, pp. 39–71, 1996.
[15]  O. F. Josef and H. Ney, “Discriminative training and maximum entropy models for statistical machine translation,” in Proceedings of the 40th Annual Meeting on Association, Association for Computational Linguistics, 2002.
[16]  K. B. Lipkowitz and T. R. Cundari, “Applications of support vector machines in chemistry,” in Reviews in Computational Chemistry, vol. 23, pp. 291–400, Wiley-VCH, Weinheim, Germany, 2007.
[17]  C. Cortes, M. Mohri, and A. Rostamizadeh, “Multi-class classification with maximum margin multiple kemel,” in Proceedings of the 30th International Conference on Machine Learning (ICML '13), vol. 3, pp. 46–54, 2013.
[18]  A. J. Smola and B. Scholkopf, “A tutorial on support vector regression,” Statistics and Computing, vol. 14, no. 3, pp. 199–222, 2004.
[19]  S. Akoho, “A kernel method for canonical correlation analysis,” in Proceedings of the International Meeting of Psychometric Society, vol. 1, 2001.
[20]  Y. Kosugi, Y. Kotani, and T. Musha, Brain-Type Information Processing, Morikita, 2006.
[21]  M. Karasuyama and M. Sugiyama, “Canonical dependency analysis based on squared-loss mutual information,” Neural Networks, vol. 34, pp. 46–55, 2012.
[22]  D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Mathematical Programming, vol. 45, no. 1–3, pp. 503–528, 1989.
[23]  J. Duchi and Y. Singer, “Efficient online and batch learning using forward backward splitting,” Journal of Machine Learning Research, vol. 10, pp. 2899–2934, 2009.
[24]  E. T. Jaynes, “On the rationale of maximum-entropy methods,” Proceedings of the IEEE, vol. 70, no. 9, pp. 939–952, 1982.
[25]  A. Caticha and A. Gin, “Updating probabilities,” in Proceedings of the Bayesian Inference and Maximum Entropy Methods in Science and Engineering, A. Mohammad-Djafari, Ed., vol. 31, p. 872, AIP, 2006.
[26]  T. Joachims, Making Large-Scale SVM Learning Practical, MIT Press, Cambridge, Mass, USA, 1998.
[27]  V. N. Vapnik, “An overview of statistical learning theory,” IEEE Transactions on Neural Networks, vol. 10, no. 5, pp. 988–999, 1999.
[28]  J. Huang, S. R. Kumar, M. Mitra, W.-J. Zhu, and R. Zabih, “Image indexing using color correlograms,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 762–768, 1997.
[29]  I. J. Cox, M. L. Miller, S. M. Omohundro, and P. N. Yianilos, “PicHunter: bayesian relevance feedback for image retrieval,” in Proceedings of the 13th International Conference on Pattern Recognition, pp. 361–369, 1996.
[30]  M. Turtinen, M. Pietikainen, and O. Silven, “Visual characterization of paper using isomap and local binary patterns,” IEICE Transactions on Information and Systems, vol. E89-D, no. 7, pp. 2076–2083, 2006.
[31]  T. Ojala, M. Pietik?inen, and T. M?enp??, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002.
[32]  M. Turtinen, M. Pietikainen, O. Silven, T. Maenpaa, and M. Niskanen, “Paper characterization by texture using visualization-based training,” The International Journal of Advanced Manufacturing Technology, vol. 22, no. 11-12, pp. 890–898, 2003.
[33]  T. Kohonen, Self-Organizing Maps, Springer, Berlin, Germany, 1997.
[34]  X. Luo, M. Shishibori, F. Ren, and K. Kita, “Incorporate feature space transformation to content-based image retrieval with relevance feedback,” International Journal of Innovative Computing, Information and Control, vol. 3, no. 5, pp. 1237–1250, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133