Identification of the subarachnoid space has traditionally been achieved by either a blind landmark-guided approach or using prepuncture ultrasound assistance. To assess the feasibility of performing spinal anaesthesia under real-time ultrasound guidance in routine clinical practice we conducted a single center prospective observational study among patients undergoing lower limb orthopaedic surgery. A spinal needle was inserted unassisted within the ultrasound transducer imaging plane using a paramedian approach (i.e., the operator held the transducer in one hand and the spinal needle in the other). The primary outcome measure was the success rate of CSF acquisition under real-time ultrasound guidance with CSF being located in 97 out of 100 consecutive patients within median three needle passes (IQR 1–6). CSF was not acquired in three patients. Subsequent attempts combining landmark palpation and pre-puncture ultrasound scanning resulted in successful spinal anaesthesia in two of these patients with the third patient requiring general anaesthesia. Median time from spinal needle insertion until intrathecal injection completion was 1.2 minutes (IQR 0.83–4.1) demonstrating the feasibility of this technique in routine clinical practice. 1. Introduction Since the first description of spinal anaesthesia in humans by Bier in 1898 [1] the identification of the subarachnoid space has traditionally been achieved by an anatomical landmark guided approach. While surface anatomical landmarks are useful, they are nevertheless surrogate markers. They may be difficult to palpate in obese patients as well as those with edema. Landmark-based approaches do not take into account all anatomical variations or abnormalities, and frequently lead to incorrect identification of a given lumbar interspace [2]. Accurate identification of the subarachnoid space is paramount as multiple attempts at needle placement may cause patient discomfort, higher incidence of spinal hematoma [3], postdural puncture headache [4, 5], and trauma to neural structures [6–8]. Having alternative approaches may help improve success and mitigate the limitations of the current techniques. Neuraxial sonography allows the operator to preview spinal anatomy, identify midline, and determine the interspace for needle insertion. Even if the preliminary scout scan has already been shown to be helpful [9], a real-time ultrasound guided approach may further improve on the limitations of the ultrasound-assisted pre-puncture techniques. In particular this technique avoids the potential for error in the process of
References
[1]
A. Bier, “Versuche über cocainisirung des rückenmarkes,” Deutsch Zeitschrift für Chirurgie, vol. 51, no. 3, pp. 352–358, 1899.
[2]
C. R. Broadbent, W. B. Maxwell, R. Ferrie, D. J. Wilson, M. Gawne-Cain, and R. Russell, “Ability of anaesthetists to identify a marked lumbar interspace,” Anaesthesia, vol. 55, no. 11, pp. 1122–1126, 2000.
[3]
H. Wulf, “Epidural anaesthesia and spinal haematoma,” Canadian Journal of Anaesthesia, vol. 43, no. 12, pp. 1260–1271, 1996.
[4]
H. Flaatten, J. Felthaus, R. Larsen, S. Bernhardsen, and H. Klausen, “Postural post-dural puncture headache after spinal and epidural anaesthesia. A randomised, double-blind study,” Acta Anaesthesiologica Scandinavica, vol. 42, no. 7, pp. 759–764, 1998.
[5]
D. A. Harrison and B. T. Langham, “Spinal anaesthesia for urological surgery. A survey of failure rate, postdural puncture headache and patient satisfaction,” Anaesthesia, vol. 47, no. 10, pp. 902–903, 1992.
[6]
Y. Auroy, P. Narchi, A. Messiah, L. Litt, B. Rouvier, and K. Samii, “Serious complications related to regional anesthesia: Results of a prospective survey in France,” Anesthesiology, vol. 87, no. 3, pp. 479–486, 1997.
[7]
R. Puolakka, J. Haasio, M. T. Pitk?nen, M. Kallio, and P. H. Rosenberg, “Technical aspects and postoperative sequelae of spinal and epidural anesthesia: a prospective study of 3,230 orthopedic patients,” Regional Anesthesia and Pain Medicine, vol. 25, no. 5, pp. 488–497, 2000.
[8]
T. T. Horlocker, D. G. McGregor, D. K. Matsushige, D. R. Schroeder, and J. A. Besse, “A retrospective review of 4767 consecutive spinal anesthetics: central nervous system complications,” Anesthesia and Analgesia, vol. 84, no. 3, pp. 578–584, 1997.
[9]
K. J. Chin, A. Perlas, V. Chan, D. Brown-Shreves, A. Koshkin, and V. Vaishnav, “Ultrasound imaging facilitates spinal anesthesia in adults with difficult surface anatomic landmarks,” Anesthesiology, vol. 115, no. 1, pp. 94–101, 2011.
[10]
K. J. Chin, V. W. S. Chan, R. Ramlogan, and A. Perlas, “Real-time ultrasound-guided spinal anesthesia in patients with a challenging spinal anatomy: two case reports,” Acta Anaesthesiologica Scandinavica, vol. 54, no. 2, pp. 252–255, 2010.
[11]
P. J. Lee, R. Tang, A. Sawka, C. Krebs, and H. Vaghadia, “Real-time ultrasound-guided spinal anesthesia using taylor's approach,” Anesthesia and Analgesia, vol. 112, no. 5, pp. 1236–1238, 2011.
[12]
T. Grau, R. U. W. Leipold, J. Horter, R. Conradi, E. O. Martin, and J. Motsch, “Paramedian access to the epidural space: the optimum window for ultrasound imaging,” Journal of Clinical Anesthesia, vol. 13, no. 3, pp. 213–217, 2001.
[13]
M. M. Atallah, A. D. Demian, and A. A. Shorrab, “Development of a difficulty score for spinal anaesthesia,” British Journal of Anaesthesia, vol. 92, no. 3, pp. 354–360, 2004.
[14]
J. Sprung, D. L. Bourke, J. Grass et al., “Predicting the difficult neuraxial block: a prospective study,” Anesthesia and Analgesia, vol. 89, no. 2, pp. 384–389, 1999.
[15]
A. Rodgers, N. Walker, S. Schug et al., “Reduction of postoperative mortality and morbidity with epidural or spinal anaesthesia: results from overview of randomised trials,” British Medical Journal, vol. 321, no. 7275, pp. 1493–1497, 2000.
[16]
J. Weed, K. Finkel, M. L. Beach, C. B. Granger, J. D. Gallagher, and B. D. Sites, “Spinal anesthesia for orthopedic surgery: a detailed video assessment of quality,” Regional Anesthesia and Pain Medicine, vol. 36, pp. 51–55, 2011.
[17]
T. Grau, R. W. Leipold, S. Fatehi, E. Martin, and J. Motsch, “Real-time ultrasonic observation of combined spinal-epidural anaesthesia,” European Journal of Anaesthesiology, vol. 21, no. 1, pp. 25–31, 2004.
[18]
G. R. De Oliveira Filho, H. P. Gomes, M. H. Z. Da Fonseca, J. C. Hoffman, S. G. Pederneiras, and J. H. S. Garcia, “Predictors of successful neuraxial block: a prospective study,” European Journal of Anaesthesiology, vol. 19, no. 6, pp. 447–451, 2002.
[19]
M. J. Tessler, K. Kardash, R. M. Wahba, S. J. Kleiman, S. T. Trihas, and M. Rossignol, “The performance of spinal anesthesia is marginally more difficult in the elderly,” Regional Anesthesia and Pain Medicine, vol. 24, no. 2, pp. 126–130, 1999.
[20]
A. Carney and V. Hunt, “The use of neuraxial scanning can facilitate spinal anaesthesia for lower limb joint arthroplasty,” in Proceedings of the 15th Annual Scientific congress of the British Society of Orthopaedic Anaesthetists, vol. 66, pp. 407–408, Nottingham, UK, Novemeber 2010.
[21]
P. D. W. Fettes, J. R. Jansson, and J. A. W. Wildsmith, “Failed spinal anaesthesia: mechanisms, management, and prevention,” British Journal of Anaesthesia, vol. 102, no. 6, pp. 739–748, 2009.
[22]
D. Tran, A. A. Kamani, E. Al-Attas, V. A. Lessoway, S. Massey, and R. N. Rohling, “Single-operator real-time ultrasound-guidance to aim and insert a lumbar epidural needle,” Canadian Journal of Anesthesia, vol. 57, no. 4, pp. 313–321, 2010.
[23]
M. K. Karmakar, X. Li, A. M. H. Ho, W. H. Kwok, and P. T. Chui, “Real-time ultrasound-guided paramedian epidural access: evaluation of a novel in-plane technique,” British Journal of Anaesthesia, vol. 102, no. 6, pp. 845–854, 2009.
[24]
T. M. Cook, “Combined spinal-epidural techniques,” Anaesthesia, vol. 55, no. 1, pp. 42–64, 2000.
[25]
Body Composition of Canadian Adults 2007 to 2009. Canadian Health Measures Survey, 2007 to 2009. National Health and Nutrition Examination Survey, 2007-2008.
[26]
J. T. Weed, A. H. Taenzer, K. J. Finkel, and B. D. Sites, “Evaluation of pre-procedure ultrasound examination as a screening tool for difficult spinal anaesthesia,” Anaesthesia, vol. 66, pp. 925–930, 2011.
[27]
C. Medd, R. Chandrashekar, and G. Simon, “Needle-through-Quincke needle technique for establishing spinal anaesthesia in the obese patient,” Anaesthesia, vol. 66, no. 5, pp. 400–401, 2011.