Anesthesia can be maintained with propofol or sevoflurane. Volatile anesthetics increase neuromuscular block of muscle relaxants. We tested the hypothesis, that sevoflurane would cause less vocal cord injuries than an intravenous anesthesia with propofol. In this prospective trial, 65 patients were randomized in 2 groups: SEVO group, anesthesia with sevoflurane, and TIVA group, total intravenous anesthesia with propofol. Intubating and extubating conditions were evaluated. Vocal cord injuries were examined by stroboscopy before and 24 and 72 h after surgery; hoarseness and sore throat were assessed up to 72 h after surgery. Hoarseness and sore throat were comparable between both groups (not significant). Similar findings were observed for vocal cord injuries: 9 (SEVO) versus 5 (TIVA) patients; ; the overall incidence was 24%. Type of vocal cord injuries: 9 erythema and 5 edema of the vocal folds. Neuromuscular block was significantly longer in the SEVO group compared with the TIVA group: 71 (range: 38–148) min versus 52 (range: 21–74) min; . Five patients (TIVA group) versus 11 patients (SEVO group) needed neostigmine to achieve a TOF ratio of 1.0 . Under anesthesia with propofol laryngeal injuries were not increased; the risk for residual curarization, however, was lower compared with sevoflurane. 1. Introduction We showed that tracheal intubation with atracurium significantly decreased vocal cord injuries compared with tracheal intubation without muscle relaxants (8% versus 42%) [1]. Tracheal intubation with atracurium at maximum neuromuscular block, however, did not decrease vocal cord injuries compared with tracheal intubation two minutes after injection of atracurium; the overall incidence was 27%, that is, higher than described in the literature (up to 12%) [2]. Maybe vocal cord injuries did not only occur during tracheal intubation but also during surgery and during removal of the tracheal tube. Volatile anesthetics increase neuromuscular block of muscle relaxants; anesthesia induction with desflurane increased neuromuscular block compared with a total intravenous anesthesia [3]. Thus, sevoflurane as part of the anesthesia would increase neuromuscular block; moreover, sevoflurane would lengthen neuromuscular block; vocal cords, therefore, would be longer relaxed. We speculated that sevoflurane would cause less vocal cord injuries than propofol during surgery and after removal of the tracheal tube. After surgery, we assessed hoarseness, sore throat, and vocal cord injuries—by stroboscopy—up to 72 hours. We expected that the patients receiving
References
[1]
T. Mencke, M. Echternach, S. Kleinschmidt et al., “Laryngeal morbidity and quality of tracheal intubation: a randomized controlled trial,” Anesthesiology, vol. 98, no. 5, pp. 1049–1056, 2003.
[2]
T. Mencke, M. Echternach, P. K. Plinkert et al., “Does the timing of tracheal intubation based on neuromuscular monitoring decrease laryngeal injury? A randomized, prospective, controlled trial,” Anesthesia and Analgesia, vol. 102, no. 1, pp. 306–312, 2006.
[3]
U. Grundmann, T. Mencke, S. Soltesz, and T. Fuchs-Buder, “Onset properties of rocuronium during co-induction of anaesthesia with desflurane and isoflurane or total intravenous anaesthesia: a randomised, controlled clinical trial,” Clinical Drug Investigation, vol. 20, no. 5, pp. 351–355, 2000.
[4]
G. C. Urbaniak and S. Plous, “Research Randomizier,” http:/www.randomizer.org, 2007.
[5]
T. Fuchs-Buder, C. Claudius, L. T. Skovgaard, L. I. Eriksson, R. K. Mirakhur, and J. Viby-Mogensen, “Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision,” Acta Anaesthesiologica Scandinavica, vol. 51, no. 7, pp. 789–808, 2007.
[6]
P. Woo, R. Colton, J. Casper, and D. Brewer, “Diagnostic value of stroboscopic examination in hoarse patients,” Journal of Voice, vol. 5, no. 3, pp. 231–238, 1991.
[7]
F. E. McHardy and F. Chung, “Postoperative sore throat: cause, prevention and treatment,” Anaesthesia, vol. 54, no. 5, pp. 444–453, 1999.
[8]
M. Echternach, T. Mencke, B. Richter, and A. Reber, “Laryngeal alterations following endotracheal intubation and use of larynx masks,” HNO, vol. 59, no. 5, pp. 485–498, 2011.
[9]
K. Maruyama, H. Sakai, H. Miyazawa et al., “Sore throat and hoarseness after total intravenous anaesthesia,” British Journal of Anaesthesia, vol. 92, no. 4, pp. 541–543, 2004.
[10]
T. J. Gan, P. S. Glass, A. Windsor et al., “Bispectral index monitoring allows faster emergence and improved recovery from propofol, alfentanil and nitrous oxide anesthesia,” Anesthesiology, vol. 87, no. 4, pp. 808–815, 1997.
[11]
B. Benjamin, “Laryngeal trauma from intubation: endoscopic evaluation and classification,” in Otolaryngology & Head & Neck Surgery, C. W. Cummings and J. M. Frederickson, Eds., pp. 2013–2035, Mosby, St. Louis, Mo, USA, 2001.
[12]
S. B. Peppard and J. H. Dickens, “Laryngeal injury following short-term intubation,” Annals of Otology, Rhinology and Laryngology, vol. 92, no. 4 I, pp. 327–330, 1983.
[13]
V. Kambic and Z. Radsel, “Intubation lesions of the larynx,” British Journal of Anaesthesia, vol. 50, no. 6, pp. 587–590, 1978.
[14]
M. A. Grzonka and O. Kleinsasser, “Laryngeal lesions due to intubation—manifestations, notes on pathogenesis, treatment and prevention,” Laryngo-Rhino-Otologie, vol. 75, no. 2, pp. 70–76, 1996.
[15]
H. Knoll, S. Ziegeler, J. U. Schreiber et al., “Airway injuries after one-lung ventilation: a comparison between double-lumen tube and endobronchial blocker—a randomized, prospective, controlled trial,” Anesthesiology, vol. 105, no. 3, pp. 471–477, 2006.
[16]
M. Sauer, A. Stahn, S. Soltesz, G. Noeldge-Schomburg, and T. Mencke, “The influence of residual neuromuscular block on the incidence of critical respiratory events. A randomised, prospective, placebo-controlled trial,” European Journal of Anaesthesiology, vol. 28, no. 12, pp. 842–848, 2011.
[17]
L. M. Capan, D. L. Bruce, and K. P. Patel, “Succinylcholine-induced postoperative sore throat,” Anesthesiology, vol. 59, no. 3, pp. 202–206, 1983.