Supraventricular arrhythmias are common rhythm disturbances following pulmonary surgery. The overall incidence varies between 3.2% and 30% in the literature, while atrial fibrillation is the most common form. These arrhythmias usually have an uneventful clinical course and revert to normal sinus rhythm, usually before patent’s discharge from hospital. Their importance lies in the immediate hemodynamic consequences, the potential for systemic embolization and the consequent long-term need for prophylactic drug administration, and the increased cost of hospitalization. Their incidence is probably related to the magnitude of the performed operative procedure, occurring more frequently after pneumonectomy than after lobectomy. Investigators believe that surgical factors (irritation of the atria per se or on the ground of chronic inflammation of aged atria), direct injury to the anatomic structure of the autonomic nervous system in the thoracic cavity, and postthoracotomy pain may contribute independently or in association with each other to the development of these arrhythmias. This review discusses currently available information about the potential mechanisms and risk factors for these rhythm disturbances. The discussion is in particular focused on the role of postoperative pain and its relation to the autonomic imbalance, in an attempt to avoid or minimize discomfort with proper analgesia utilization. 1. Introduction Variations from the normal rhythm of the heartbeat, encompassing abnormalities of rate, regularity, site of impulse origin, and sequence of activation are well-documented complications following thoracotomies for surgical treatment of intrathoracic pathology [1–10]. Generally, these perioperative arrhythmias are associated with longer hospital stay and higher cost [8]. Although not widely accepted, many authors believe that patients developing persistent or recurrent tachyarrhythmias present a greater mortality and experience more complications than those who maintained normal sinus rhythms after surgery [1–3]. Based on an up-to-date literature review, this paper discusses currently available information about the potential mechanisms and risk factors for the development of these rhythm disturbances. We searched for original articles, review articles, case series or case reports, and editorials using the MEDLINE database (from January 2002 to September 2012) and the Cochrane Central Register of Controlled Trials by combining the terms “thoracotomy,” “pulmonary resection,” “arrhythmia,” “atrial fibrillation,” “heart rate variability,” and
References
[1]
F. M. Mowry and E. W. Reynolds Jr., “Cardiac rhythm disturbances complicating resectional surgery of the lung,” Annals of Internal Medicine, vol. 61, pp. 688–695, 1964.
[2]
M. J. Krowka, P. C. Pairolero, and V. F. Trastek, “Cardiac dysrhythmia following pneumonectomy: clinical correlates and prognostic significance,” Chest, vol. 91, no. 4, pp. 490–495, 1987.
[3]
D. H. Harpole Jr., M. J. Liptay, M. M. DeCamp Jr., S. J. Mentzer, S. J. Swanson, and D. J. Sugarbaker, “Prospective analysis of pneumonectomy: risk factors for major morbidity and cardiac dysrhythmias,” Annals of Thoracic Surgery, vol. 61, no. 3, pp. 977–982, 1996.
[4]
H. Asamura, T. Naruke, R. Tsuchiya, T. Goya, H. Kondo, and K. Suemasu, “What are the risk factors for arrhythmias after thoracic operations? A retrospective multivariate analysis of 267 consecutive thoracic operations,” Journal of Thoracic and Cardiovascular Surgery, vol. 106, no. 6, pp. 1104–1110, 1993.
[5]
W. Dyszkiewicz and M. Skrzypczak, “Atrial fibrillation after surgery of the lung: clinical analysis of risk factors,” European Journal of Cardio-Thoracic Surgery, vol. 13, no. 6, pp. 625–628, 1998.
[6]
J. J. Curtis, B. M. Parker, C. A. McKenney et al., “Incidence and predictors of supraventricular dysrhythmias after pulmonary resection,” Annals of Thoracic Surgery, vol. 66, no. 5, pp. 1766–1771, 1998.
[7]
P. Ciriaco, P. Mazzone, B. Canneto, and P. Zannini, “Supraventricular arrhythmia following lung resection for non-small cell lung cancer and its treatment with amiodarone,” European Journal of Cardio-Thoracic Surgery, vol. 18, no. 1, pp. 12–16, 2000.
[8]
T. Oka, Y. Ozawa, and Y. Ohkubo, “Thoracic epidural bupivacaine attenuates supraventricular tachyarrhythmias after pulmonary resection,” Anesthesia and Analgesia, vol. 93, no. 2, pp. 253–259, 2001.
[9]
Y. Sekine, K. A. Kesler, M. Behnia, J. Brooks-Brunn, E. Sekine, and J. W. Brown, “COPD may increase the incidence of refractory supraventricular arrhythmias following pulmonary resection for non-small cell lung cancer,” Chest, vol. 120, no. 6, pp. 1783–1790, 2001.
[10]
O. Rena, E. Papalia, A. Oliaro et al., “Supraventricular arrhythmias after resection surgery of the lung,” European Journal of Cardio-Thoracic Surgery, vol. 20, no. 4, pp. 688–693, 2001.
[11]
D. H. Wu, M. Y. Xu, T. Mao, H. Cao, D. J. Wu, and Y. F. Shen, “Risk factors for intraoperative atrial fibrillation: a retrospective analysis of 10, 563 lung operations in a single center,” The Annals of Thoracic Surgery, vol. 94, no. 1, pp. 193–197, 2012.
[12]
N. Barbetakis and M. Vassiliadis, “Is amiodarone a safe antiarrhythmic to use in supraventricular tachyarrhythmias after lung cancer surgery?” BMC Surgery, vol. 4, article 7, pp. 1–6, 2004.
[13]
E. E. Roselli, S. C. Murthy, T. W. Rice et al., “Atrial fibrillation complicating lung cancer resection,” Journal of Thoracic and Cardiovascular Surgery, vol. 130, no. 2, pp. 438–444, 2005.
[14]
A. A. Vaporciyan, A. M. Correa, D. C. Rice et al., “Risk factors associated with atrial fibrillation after noncardiac thoracic surgery: analysis of 2588 patients,” Journal of Thoracic and Cardiovascular Surgery, vol. 127, no. 3, pp. 779–786, 2004.
[15]
L. J. Kohman, J. A. Meyer, P. M. Ikins, and R. P. Oates, “Random versus predictable risks of mortality after thoracotomy for lung cancer,” Journal of Thoracic and Cardiovascular Surgery, vol. 91, no. 4, pp. 551–554, 1986.
[16]
T. Kimura, T. Komatsu, J. Takezawa, and Y. Shimada, “Alterations in spectral characteristics of heart rate variability as a correlate of cardiac autonomic dysfunction after esophagectomy or pulmonary resection,” Anesthesiology, vol. 84, no. 5, pp. 1068–1076, 1996.
[17]
S. C. Murthy, S. Law, B. P. Whooley, A. Alexandrou, K. M. Chu, and J. Wong, “Atrial fibrillation after esophagectomy is a marker for postoperative morbidity and mortality,” Journal of Thoracic and Cardiovascular Surgery, vol. 126, no. 4, pp. 1162–1167, 2003.
[18]
D. Amar, N. Roistacher, V. W. Rusch et al., “Effects of diltiazem prophylaxis on the incidence and clinical outcome of atrial arrhythmias after thoracic surgery,” Journal of Thoracic and Cardiovascular Surgery, vol. 120, no. 4, pp. 790–798, 2000.
[19]
Y. Sekine, M. Behnia, and T. Fujisawa, “Impact of COPD on pulmonary complications and on long-term survival of patients undergoing surgery for NSCLC,” Lung Cancer, vol. 37, no. 1, pp. 95–101, 2002.
[20]
M. S. Spach and P. C. Dolber, “Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: evidence for electrical uncoupling of side-to-side fiber connections with increasing age,” Circulation Research, vol. 58, no. 3, pp. 356–371, 1986.
[21]
M. A. Allessie, P. A. Boyden, A. J. Camm et al., “Pathophysiology and prevention of atrial fibrillation,” Circulation, vol. 103, no. 5, pp. 769–777, 2001.
[22]
D. Amar, H. Zhang, D. H. Y. Leung, N. Roistacher, and A. H. Kadish, “Older age is the strongest predictor of postoperative atrial fibrillation,” Anesthesiology, vol. 96, no. 2, pp. 352–356, 2002.
[23]
B. A. Keagy, G. R. Schorlemmer, and G. F. Murray, “Correlation of preoperative pulmonary function testing with clinical course in patients after pneumonectomy,” Annals of Thoracic Surgery, vol. 36, no. 3, pp. 253–257, 1983.
[24]
J. von Knorring, M. Lepantalo, L. Lindgren, and O. Lindfors, “Cardiac arrhythmias and myocardial ischemia after thoracotomy for lung cancer,” Annals of Thoracic Surgery, vol. 53, no. 4, pp. 642–647, 1992.
[25]
C. A. Polanczyk, L. Goldman, E. R. Marcantonio, E. J. Orav, and T. H. Lee, “Supraventricular arrhythmia in patients having noncardiac surgery: clinical correlates and effect on length of stay,” Annals of Internal Medicine, vol. 129, no. 4, pp. 279–285, 1998.
[26]
R. E. Clark, I. Christlieb, M. Sanmarco, R. Diaz-Perez, and J. F. Damman, “Relationship of hypoxia to arrhythmia and cardiac conduction hemorrhage: an experimental study,” Circulation, vol. 27, pp. 742–747, 1963.
[27]
C. W. Silverblatt, F. Wasserman, G. L. Baum, M. W. Wolcott, A. M. Greenberger, and J. J. Traitz, “Factors associated with the development of ectopic rhythms during surgery,” The American Journal of Surgery, vol. 103, no. 1, pp. 102–115, 1962.
[28]
Y. K. Ju, D. A. Saint, and P. W. Gage, “Hypoxia increases persistent sodium current in rat ventricular myocytes,” Journal of Physiology, vol. 497, no. 2, pp. 337–347, 1996.
[29]
H. Asamura, T. Naruke, R. Tsuchiya, T. Goya, H. Kondo, and K. Suemasu, “What are the risk factors for arrhythmias after thoracic operations? A retrospective multivariate analysis of 267 consecutive thoracic operations,” Journal of Thoracic and Cardiovascular Surgery, vol. 106, no. 6, pp. 1104–1110, 1993.
[30]
G. Motta and G. B. Ratto, “Complications of surgery in the treatment of lung cancer: their relationship with the extent of resection and preoperative respiratory function tests,” Acta Chirurgica Belgica, vol. 89, no. 3, pp. 161–165, 1989.
[31]
J. B. Mark, E. P. Call, and C. F. von Essen, “Preoperative irradiation in patients undergoing pneumonectomy for carcinoma of the lung; incidence of postoperative cardiac complications,” Journal of Thoracic and Cardiovascular Surgery, vol. 51, no. 1, pp. 30–35, 1966.
[32]
L. Frost, E. H. Christiansen, H. M?lgaard, C. J. Jacobsen, H. Allermand, and P. E. Thomsen, “Premature atrial beat eliciting atrial fibrillation after coronary artery bypass grafting,” Journal of Electrocardiology, vol. 28, no. 4, pp. 297–305, 1995.
[33]
R. H. Falk, “Atrial fibrillation,” New England Journal of Medicine, vol. 344, no. 14, pp. 1067–1078, 2001.
[34]
D. Amar, P. M. Heerdt, R. J. Korst, H. Zhang, and H. Nguyen, “The effects of advanced age on the incidence of supraventricular arrhythmias after pneumonectomy in dogs,” Anesthesia and Analgesia, vol. 94, no. 5, pp. 1132–1136, 2002.
[35]
D. H. Spodick, P. G. Danias, D. I. Silverman, and W. J. Manning, “Significant arrhythmias during pericarditis are due to concomitant heart disease,” Journal of the American College of Cardiology, vol. 32, no. 2, pp. 551–552, 1998.
[36]
J. Cruz, J. Sousa, A. G. Oliveira, and L. Silva-Carvalho, “Effects of endoscopic thoracic sympathectomy for primary hyperhidrosis on cardiac autonomic nervous activity,” Journal of Thoracic and Cardiovascular Surgery, vol. 137, no. 3, pp. 664–669, 2009.
[37]
B. J. Park, H. Zhang, V. W. Rusch, and D. Amar, “Video-assisted thoracic surgery does not reduce the incidence of postoperative atrial fibrillation after pulmonary lobectomy,” Journal of Thoracic and Cardiovascular Surgery, vol. 133, no. 3, pp. 775–779, 2007.
[38]
M. Ha?ssaguerre, P. Ja?s, D. C. Shah et al., “Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins,” New England Journal of Medicine, vol. 339, no. 10, pp. 659–666, 1998.
[39]
C. Dimmer, R. Tavernier, N. Gjorgov, G. van Nooten, D. L. Clement, and L. Jordaens, “Variations of autonomic tone preceding onset of atrial fibrillation after coronary artery bypass grafting,” American Journal of Cardiology, vol. 82, no. 1, pp. 22–25, 1998.
[40]
C. W. Hogue Jr., P. P. Domitrovich, P. K. Stein et al., “RR interval dynamics before atrial fibrillation in patients after coronary artery bypass graft surgery,” Circulation, vol. 98, no. 5, pp. 429–434, 1998.
[41]
Y. J. Chen, S. A. Chen, C. T. Tai et al., “Role of atrial electrophysiology and autonomic nervous system in patients with supraventricular tachycardia and paroxysmal atrial fibrillation,” Journal of the American College of Cardiology, vol. 32, no. 3, pp. 732–738, 1998.
[42]
A. Malliani, M. Pagani, F. Lombardi, and S. Cerutti, “Cardiovascular neural regulation explored in the frequency domain,” Circulation, vol. 84, no. 2, pp. 482–492, 1991.
[43]
Task Force of the European Society of Cardiology and The North American Society of Pacing and Electrophysiology, “Heart rate variability: standards of measurement, physiological interpretation, and clinical use,” Circulation, vol. 93, no. 5, pp. 1043–1065, 1996.
[44]
D. L. Eckberg, “Sympathovagal balance: a critical appraisal,” Circulation, vol. 96, no. 9, pp. 3224–3232, 1997.
[45]
B. L. T. Mainardi, “On the quantification of heart rate variability spectral parameters using time-frequency and time-varying methods,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1887, pp. 255–275, 2009.
[46]
A. Zaza and F. Lombardi, “Autonomic indexes based on the analysis of heart rate variability: a view from the sinus node,” Cardiovascular Research, vol. 50, no. 3, pp. 434–442, 2001.
[47]
K. E. F. Sands, M. L. Appel, L. S. Lilly, F. J. Schoen, G. H. Mudge Jr., and R. J. Cohen, “Power spectrum analysis of heart rate variability in human cardiac transplant recipients,” Circulation, vol. 79, no. 1, pp. 76–82, 1989.
[48]
L. Bernardi, F. Salvucci, R. Suardi et al., “Evidence for an intrinsic mechanism regulating heart rate variability in the transplanted and the intact heart during submaximal dynamic exercise?” Cardiovascular Research, vol. 24, no. 12, pp. 969–981, 1990.
[49]
M. J. Licker, A. Spiliopoulos, and J. M. Tschopp, “Influence of thoracic epidural analgesia on cardiovascular autonomic control after thoracic surgery,” British Journal of Anaesthesia, vol. 91, no. 4, pp. 525–531, 2003.
[50]
D. Amar, H. Zhang, S. Miodownik, and A. H. Kadish, “Competing autonomic mechanisms precede the onset of postoperative atrial fibrillation,” Journal of the American College of Cardiology, vol. 42, no. 7, pp. 1262–1268, 2003.
[51]
M. Bettoni and M. Zimmermann, “Autonomic tone variations before the onset of paroxysmal atrial fibrillation,” Circulation, vol. 105, no. 23, pp. 2753–2759, 2002.
[52]
G. de Cosmo, P. Aceto, E. Gualtieri, and E. Congedo, “Analgesia in thoracic surgery: review,” Minerva Anestesiologica, vol. 75, no. 6, pp. 393–400, 2009.
[53]
K. Wildgaard, J. Ravn, and H. Kehlet, “Chronic post-thoracotomy pain: a critical review of pathogenic mechanisms and strategies for prevention,” European Journal of Cardio-Thoracic Surgery, vol. 36, no. 1, pp. 170–180, 2009.
[54]
L. Groban, S. Y. Dolinski, D. A. Zvara, and T. Oaks, “Thoracic epidural analgesia: its role in postthoracotomy atrial arrhythmias,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 14, no. 6, pp. 662–665, 2000.
[55]
V. Shrivastava, B. Nyawo, J. Dunning, and G. Morritt, “Is there a role for prophylaxis against atrial fibrillation for patients undergoing lung surgery?” Interactive Cardiovascular and Thoracic Surgery, vol. 3, no. 4, pp. 656–662, 2004.
[56]
R. Takeshima and S. Dohi, “Circulatory responses to baroreflexes, Valsalva maneuver, coughing, swallowing and nasal stimulation during acute cardiac sympathectomy by epidural blockade in awake humans,” Anesthesiology, vol. 63, no. 5, pp. 500–508, 1985.
[57]
M. Licker, C. Farinelli, and C. E. Klopfenstein, “Cardiovascular reflexes during anesthesia induction and tracheal intubation in elderly patients: the influence of thoracic epidural anesthesia,” Journal of Clinical Anesthesia, vol. 7, no. 4, pp. 281–287, 1995.
[58]
H. B. Hopf, A. Skyschally, G. Heusch, and J. Peters, “Low-frequency spectral power of heart rate variability is not a specific marker of cardiac sympathetic modulation,” Anesthesiology, vol. 82, no. 3, pp. 609–619, 1995.
[59]
R. P. S. Introna, N. Montano, E. H. Yodlowski et al., “Low-frequency component of heart rate variability,” Anesthesiology, vol. 83, no. 4, pp. 884–887, 1995.
[60]
M. Vettorello, R. Colombo, C. E. de Grandis, E. Costantini, and F. Raimondi, “Effect of fentanyl on heart rate variability during spontaneous and paced breathing in healthy volunteers,” Acta Anaesthesiologica Scandinavica, vol. 52, no. 8, pp. 1064–1070, 2008.
[61]
Z. Jiang, J. Q. Dai, C. Shi, W. S. Zeng, R. C. Jiang, and W. F. Tu, “Influence of patient-controlled i.v. analgesia with opioids on supraventricular arrhythmias after pulmonary resection,” British Journal of Anaesthesia, vol. 103, no. 3, pp. 364–368, 2009.
[62]
M. Simeoforidou, G. Vretzakis, M. Bareka et al., “Thoracic epidural analgesia with levobupivacaine for 6 postoperative days attenuates sympathetic activation after thoracic surgery,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 25, no. 5, pp. 817–823, 2011.
[63]
M. Scherer, A. S. Sirat, T. Aybek, S. Martens, P. Kessler, and A. Moritz, “Thoracic epidural anesthesia does not influence the incidence of postoperative atrial fibrillation after beating heart surgery,” Thoracic and Cardiovascular Surgeon, vol. 51, no. 1, pp. 8–10, 2003.
[64]
L. Jidéus, P. O. Joachimsson, M. Stridsberg et al., “Thoracic epidural anesthesia does not influence the occurrence of postoperative sustained atrial fibrillation,” Annals of Thoracic Surgery, vol. 72, no. 1, pp. 65–71, 2001.
[65]
A. Bobbio, D. Caporale, E. Internullo et al., “Postoperative outcome of patients undergoing lung resection presenting with new-onset atrial fibrillation managed by amiodarone or diltiazem,” European Journal of Cardio-Thoracic Surgery, vol. 31, no. 1, pp. 70–74, 2007.
[66]
A. J. Ritchie, P. Bowe, and J. R. P. Gibbons, “Prophylactic digitalization for thoracotomy: a reassessment,” Annals of Thoracic Surgery, vol. 50, no. 1, pp. 86–88, 1990.
[67]
A. J. Ritchie, M. Danton, and J. R. P. Gibbons, “Prophylactic digitalisation in pulmonary surgery,” Thorax, vol. 47, no. 1, pp. 41–43, 1992.
[68]
A. J. Ritchie, M. Tolan, M. Whiteside, J. A. McGuigan, and J. R. P. Gibbons, “Prophylactic digitalization fails to control dysrhythmia in thoracic esophageal operations,” Annals of Thoracic Surgery, vol. 55, no. 1, pp. 86–88, 1993.
[69]
A. Borgeat, P. Petropoulos, R. Cavin, J. Biollaz, A. Munafo, and D. Schwander, “Prevention of arrhythmias after noncardiac thoracic operations: flecainide versus digoxin,” Annals of Thoracic Surgery, vol. 51, no. 6, pp. 964–968, 1991.
[70]
D. Amar, N. Roistacher, M. E. Burt et al., “Effects of diltiazem versus digoxin on dysrhythmias and cardiac function after pneumonectomy,” Annals of Thoracic Surgery, vol. 63, no. 5, pp. 1374–1382, 1997.
[71]
A. Borgeat, J. Biollaz, M. Bayer-Berger, L. Kappenberger, G. Chapuis, and R. Chiolero, “Prevention of arrhythmias by flecainide after noncardiac thoracic surgery,” Annals of Thoracic Surgery, vol. 48, no. 2, pp. 232–234, 1989.
[72]
D. Amar, H. Zhang, and N. Roistacher, “The incidence and outcome of ventricular arrhythmias after noncardiac thoracic surgery,” Anesthesia and Analgesia, vol. 95, no. 3, pp. 537–543, 2002.
[73]
W. van Mieghem, G. Tits, K. Demuynck et al., “Verapamil as prophylactic treatment for atrial fibrillation after lung operations,” Annals of Thoracic Surgery, vol. 61, no. 4, pp. 1083–1086, 1996.
[74]
W. van Mieghem, L. Coolen, I. Malysse, L. M. Lacquet, G. J. D. Deneffe, and M. G. P. Demedts, “Amiodarone and the development of ARDS after lung surgery,” Chest, vol. 105, no. 6, pp. 1642–1645, 1994.
[75]
L. A. Lanza, A. I. Visbal, P. A. DeValeria et al., “Low-dose oral amiodarone prophylaxis reduces atrial fibrillation after pulmonary resection,” Annals of Thoracic Surgery, vol. 75, no. 1, pp. 223–230, 2003.
[76]
J. E. Tisdale, H. A. Wroblewski, D. S. Wall et al., “A randomized trial evaluating amiodarone for prevention of atrial fibrillation after pulmonary resection,” Annals of Thoracic Surgery, vol. 88, no. 3, pp. 886–895, 2009.
[77]
L. P. Riber, T. D. Christensen, H. K. Jensen, A. Hoejsgaard, and H. K. Pilegaard, “Amiodarone significantly decreases atrial fibrillation in patients undergoing surgery for lung cancer,” The Annals of Thoracic Surgery, vol. 94, no. 2, pp. 339–344, 2012.
[78]
E. G. Manios, H. E. Mavrakis, E. M. Kanoupakis et al., “Effects of amiodarone and diltiazem on persistent atrial fibrillation conversion and recurrence rates: a randomized controlled study,” Cardiovascular Drugs and Therapy, vol. 17, no. 1, pp. 31–39, 2003.
[79]
D. Amar, “Postthoracotomy atrial fibrillation,” Current Opinion in Anaesthesiology, vol. 20, no. 1, pp. 43–47, 2007.
[80]
C. J. Jakobsen, S. Bille, P. Ahlburg, L. Rybro, K. Hjortholm, and E. B. Andresen, “Perioperative metoprolol reduces the frequency of atrial fibrillation after thoracotomy for lung resection,” Journal of Cardiothoracic and Vascular Anesthesia, vol. 11, no. 6, pp. 746–751, 1997.
[81]
C. D. Bayliff, D. R. Massel, R. I. Inculet et al., “Propranolol for the prevention of postoperative arrhythmias in general thoracic surgery,” Annals of Thoracic Surgery, vol. 67, no. 1, pp. 182–186, 1999.
[82]
A. Terzi, C. Furlan, P. Chiavacci, B. Dal Corso, A. Luzzani, and S. Dalla Volta, “Prevention of atrial tachyarrhythmias after non-cardiac thoracic surgery by infusion of magnesium sulfate,” Thoracic and Cardiovascular Surgeon, vol. 44, no. 6, pp. 300–303, 1996.
[83]
S. E. Mayson, A. J. Greenspon, S. Adams et al., “The changing face of postoperative atrial fibrillation prevention: a review of current medical therapy,” Cardiology in Review, vol. 15, no. 5, pp. 231–241, 2007.
[84]
A. Sedrakyan, T. Treasure, J. Browne, H. Krumholz, C. Sharpin, and J. van der Meulen, “Pharmacologic prophylaxis for postoperative atrial tachyarrhythmia in general thoracic surgery: evidence from randomized clinical trials,” Journal of Thoracic and Cardiovascular Surgery, vol. 129, no. 5, pp. 997–1005, 2005.