全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Clinical Significance of Amyloid Precursor Protein in Patients with Testicular Germ Cell Tumor

DOI: 10.1155/2013/348438

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction. The biological role of amyloid precursor protein (APP) is not well understood, especially in testicular germ cell tumors (TGCTs). Therefore, we aimed to investigate the immunoreactivity (IR) and expression of APP in TGCTs and evaluated its clinical relevance. Materials and Methods. We performed an analysis of immunohistochemistry and mRNA expression of APP in 64 testicular specimens and 21 snap-frozen samples obtained from 1985 to 2004. We then evaluated the association between APP expression and clinicopathological status in TGCTs. Results. Positive APP IR was observed in 9.8% (4/41) of seminomatous germ cell tumors (SGCTs) and 39.1% (9/23) of nonseminomatous germ cell tumors (NGCTs). NGCTs showed significantly more cases of positive IR and a higher mRNA expression level compared with those of SGCTs . Positive APP IR was also significantly associated with α-fetoprotein (αFP) elevation and venous invasion . Conclusion. We observed an elevated APP expression in TGCTs, especially in NGCTs. APP may be associated with a more aggressive cancer in TGCTs. 1. Introduction Testicular cancer is a relatively rare cancer that accounts for approximately 1–1.5% of male cancers, and 90–95% of these cancers are testicular germ cell tumors (TGCTs) [1]. TGCTs can be classified into two major histological categories, namely, seminomatous germ cell tumor (SGCT) and nonseminomatous germ cell tumor (NGCT). NGCTs, which include yolk sac tumors, embryonal cell carcinomas, teratomas, and choriocarcinomas, are different from SGCTs with regard to clinical characteristics and therapy required. Amyloid precursor protein (APP) is a type 1 transmembrane protein that is considered to play a key role in Alzheimer’s disease. It has multiple isoforms attributable to alternative splicing and is expressed in various types of human cells. APP695 predominantly exists in the neurons whereas other isoforms such as the APP751 and APP770 are expressed in nonneuronal cells [2]. The biological role of APP is not well understood. APP and its cleaved forms have been suggested to mediate various functions, including cell adhesion [3], cell signaling [4], and cell growth [5–7]. These functions are important in carcinogenesis, and APP expression may be involved in the development of various cancers [8–13]. We have previously shown that APP is a primary androgen-responsive gene that promotes the growth of prostate cancer cells [14]. In the present study, we investigated APP immunoreactivity (IR) and APP mRNA expression in TGCTs and evaluated its clinical significance. 2. Materials and

References

[1]  P. Albers, W. Albrecht, F. Algaba et al., “EAU guidelines on testicular cancer: 2011 update,” European Urology, vol. 60, no. 2, pp. 304–319, 2011.
[2]  D. J. Selkoe, “Alzheimer's disease: genes, proteins, and therapy,” Physiological Reviews, vol. 81, no. 2, pp. 741–766, 2001.
[3]  D. Schubert, L.-W. Jin, T. Saitoh, and G. Cole, “The regulation of amyloid β protein precursor secretion and its modulatory role in cell adhesion,” Neuron, vol. 3, no. 6, pp. 689–694, 1989.
[4]  Y. Gao and S. W. Pimplikar, “The γ-secretase-cleaved C-terminal fragment of amyloid precursor protein mediates signaling to the nucleus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 26, pp. 14979–14984, 2001.
[5]  C. Siemes, T. Quast, E. Klein, T. Bieber, N. M. Hooper, and V. Herzog, “Normalized proliferation of normal and psoriatic keratinocytes by supperssion of sAPPα-release,” Journal of Investigative Dermatology, vol. 123, no. 3, pp. 556–563, 2004.
[6]  A. Schmitz, R. Tikkanen, G. Kirfel, and V. Herzog, “The biological role of the Alzheimer amyloid precursor protein in epithelial cells,” Histochemistry and Cell Biology, vol. 117, no. 2, pp. 171–180, 2002.
[7]  T. Saitoh, M. Sundsmo, J. M. Roch et al., “Secreted form of amyloid β protein precursor is involved in the growth regulation of fibroblasts,” Cell, vol. 58, no. 4, pp. 615–622, 1989.
[8]  C. E. Tang, Y. J. Guan, B. Yi et al., “Identification of the amyloid β-protein precursor and cystatin C as novel epidermal growth factor receptor regulated secretory proteins in nasopharyngeal carcinoma by proteomics,” Journal of Proteome Research, vol. 9, no. 12, pp. 6101–6111, 2010.
[9]  S. Y. Ko, S. C. Lin, K. W. Chang et al., “Increased expression of amyloid precursor protein in oral squamous cell carcinoma,” International Journal of Cancer, vol. 111, no. 5, pp. 727–732, 2004.
[10]  C. U. Pietrzik, J. Hoffmann, K. St?ber et al., “From differentiation to proliferation: the secretory amyloid precursor protein as a local mediator of growth in thyroid epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1770–1775, 1998.
[11]  K. Krause, S. Karger, S. Y. Sheu et al., “Evidence for a role of the amyloid precursor protein in thyroid carcinogenesis,” Journal of Endocrinology, vol. 198, no. 2, pp. 291–299, 2008.
[12]  J. Y. Meng, H. Kataoka, H. Itoh, and M. Koono, “Amyloid β protein precursor is involved in the growth of human colon carcinoma cell in vitro and in vivo,” International Journal of Cancer, vol. 92, no. 1, pp. 31–39, 2001.
[13]  V. Venkataramani, C. Rossner, L. Iffland et al., “Histone deacetylase inhibitor valproic acid inhibits cancer cell proliferation via down-regulation of the alzheimer amyloid precursor protein,” The Journal of Biological Chemistry, vol. 285, no. 14, pp. 10678–10689, 2010.
[14]  K. Takayama, S. Tsutsumi, T. Suzuki et al., “Amyloid precursor protein is a primary androgen target gene that promotes prostate cancer growth,” Cancer Research, vol. 69, no. 1, pp. 137–142, 2009.
[15]  G. M. Mead, “International germ cell consensus classification: a prognostic factor- based staging system for metastatic germ cell cancers,” Journal of Clinical Oncology, vol. 15, no. 2, pp. 594–603, 1997.
[16]  T. Fujimura, S. Takahashi, T. Urano et al., “Estrogen receptor-binding fragment-associated gene 9 expression and its clinical significance in human testicular cancer,” International Journal of Urology, vol. 16, no. 3, pp. 329–332, 2009.
[17]  D. C. Gilbert, I. Chandler, B. Summersgill et al., “Genomic gain and over expression of CCL2 correlate with vascular invasion in stage I non-seminomatous testicular germ-cell tumours,” International Journal of Andrology, vol. 34, pp. 114–121, 2011.
[18]  K. Horie-Inoue, K. Takayama, H. U. Bono, Y. Ouchi, Y. Okazaki, and S. Inoue, “Identification of novel steroid target genes through the combination of bioinformatics and functional analysis of hormone response elements,” Biochemical and Biophysical Research Communications, vol. 339, no. 1, pp. 99–106, 2006.
[19]  E. A. Milward, R. Papadopoulos, S. J. Fuller et al., “The amyloid protein precursor of Alzheimer's disease is a mediator of the effects of nerve growth factor on neurite outgrowth,” Neuron, vol. 9, no. 1, pp. 129–137, 1992.
[20]  W. Q. Qiu, A. Ferreira, C. Miller, E. H. Koo, and D. J. Selkoe, “Cell-surface β-amyloid precursor protein stimulates neurite outgrowth of hippocampal neurons in an isoform-dependent manner,” Journal of Neuroscience, vol. 15, no. 3, pp. 2157–2167, 1995.
[21]  H. Zheng and E. H. Koo, “The amyloid precursor protein: beyond amyloid,” Molecular Neurodegeneration, vol. 1, no. 1, article 5, 2006.
[22]  A. Ho and T. C. Südhof, “Binding of F-spondin to amyloid-β precursor protein: a candidate amyloid-β precursor protein ligand that modulates amyloid-β precursor protein cleavage,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 8, pp. 2548–2553, 2004.
[23]  S. L. Sabo, A. F. Ikin, J. D. Buxbaum, and P. Greengard, “The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement,” Journal of Cell Biology, vol. 153, no. 7, pp. 1403–1414, 2001.
[24]  E. Bertrand, E. Brouillet, I. Caillé et al., “A short cytoplasmic domain of the amyloid precursor protein induces apoptosis in vitro and in vivo,” Molecular and Cellular Neuroscience, vol. 18, no. 5, pp. 503–511, 2001.
[25]  T. Ozaki, Y. Li, H. Kikuchi, T. Tomita, T. Iwatsubo, and A. Nakagawara, “The intracellular domain of the amyloid precursor protein (AICD) enhances the p53-mediated apoptosis,” Biochemical and Biophysical Research Communications, vol. 351, no. 1, pp. 57–63, 2006.
[26]  V. Venkataramani, K. Thiele, C. L. Behnes, et al., “Amyloid precursor protein is a biomarker for transformed human pluripotent stem cells,” The American Journal of Pathology, vol. 180, pp. 1636–1652, 2012.
[27]  J. W. Moul, W. F. McCarthy, E. B. Fernandez, and I. A. Sesterhenn, “Percentage of embryonal carcinoma and of vascular invasion predicts pathological stage in clinical stage I nonseminomatous testicular cancer,” Cancer Research, vol. 54, no. 2, pp. 362–364, 1994.
[28]  L. Amigoni, M. Ceriani, F. Belotti, G. Minopoli, and E. Martegani, “Activation of amyloid precursor protein processing by growth factors is dependent on Ras GTPase activity,” Neurochemical Research, vol. 36, no. 3, pp. 392–398, 2011.
[29]  C. L. Arteaga, “Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia,” Seminars in Oncology, vol. 29, no. 5, pp. 3–9, 2002.
[30]  M. Moroni, S. Veronese, R. Schiavo et al., “Epidermal growth factor receptor expression and activation in nonseminomatous germ cell tumors,” Clinical Cancer Research, vol. 7, no. 9, pp. 2770–2775, 2001.
[31]  L. Mándoky, L. Géczi, I. Bodrogi et al., “Clinical relevance of HER-2/neu expression in germ-cell testicular tumors,” Anticancer Research, vol. 24, no. 4, pp. 2219–2224, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133