Aim. We aimed to evaluate the antioxidant effects of weight loss and melatonin on the obesity-induced oxidative damage in rat testes. Materials and Methods. 28 male Wistar albino rats were randomly divided into 4 groups, each consisting of 7 rats: control group (Group 1), obesity group (Group 2), obesity + MLT group (Group 3), and weight loss group (Group 4). Rats were weighed at the beginning and at the end of the study. Bilateral orchiectomy was performed and 5?cc blood samples were obtained from all of the rats. Superoxide dismutase (SOD), malondialdehyde (MDA), and protein carbonyl (PC) levels were analysed in the testicular tissues and serum. Spermatogenesis was evaluated with the Johnsen scoring system. Results. The testicular tissue and serum levels of MDA, PC, and SOD activity were increased in the obesity group in comparison to the sham operated group ( ). Weight loss and melatonin treatment ameliorated MDA, PC, and SOD levels in testicular tissue and serum significantly ( ). There was no significant difference between groups in terms of mean Johnsen score ( ). Conclusion. Experimentally created obesity caused oxidative stress and both melatonin and weight loss reduced oxidative stress parameters in rat testes. 1. Introduction Obesity is the accumulation of excessive fat in adipose tissue and it is one of the most important health problem in the world at the present time which affects both gender and all age groups [1]. According to WHO (World Health Organisation), overweight and obesity are major risk factors for a number of chronic diseases including diabetes, cardiovascular diseases, cancer, and certain reproductive and metabolic disorders. Once considered as a problem only in high income countries, overweight and obesity are now dramatically on the rise in low- and middle-income countries, particularly in urban settings [2]. The relevance of increased BMI with poor semen quality [3], decreased sperm concentration [4–7], decreased normal-motile sperm cells, and increased DNA fragmentation index [8, 9] was shown in many studies recently. In contrast to these results, there are also some other studies that claimed no relationship between obesity and sperm concentration, motility or morphology, as well as [10–12]. The mechanisms that describe the relationship between obesity and male infertility are still unclear. Increased DNA fragmentation [9], oxidative stress (OS) [13], and hormonal imbalance [14, 15] have been proposed as the likely mechanisms of sperm abnormalities associated with obesity. Oxidative injury is a complex phenomenon that
References
[1]
P. G. Kopelman, “Obesity as a medical problem,” Nature, vol. 404, no. 6778, pp. 635–643, 2000.
[2]
WHO, “World Health Organization Part I: the problem of overweight and obesity. World Health Organization. Obesity: preventing and managing the global epidemic,” WHO Technical Report Series 894, Geneva, Switzerland, 2000.
[3]
F. Hammiche, J. S. Laven, J. M. Twigt, W. P. Boellaard, E. A. Steegers, and R. P. Steegers-Theunissen, “Body mass index and central adiposity are associated with sperm quality in men of subfertile couples,” Human Reproduction, vol. 27, no. 8, pp. 2365–2372, 2012.
[4]
L. Sekhavat and M. R. Moein, “The effect of male body mass index on sperm parameters,” Aging Male, vol. 13, no. 3, pp. 155–158, 2010.
[5]
T. K. Jensen, A.-M. Andersson, N. J?rgensen et al., “Body mass index in relation to semen quality and reproductive hormones among 1,558 Danish men,” Fertility and Sterility, vol. 82, no. 4, pp. 863–870, 2004.
[6]
U. Paasch, S. Grunewald, J. Kratzsch, and H.-J. Glander, “Obesity and age affect male fertility potential,” Fertility and Sterility, vol. 94, no. 7, pp. 2898–2901, 2010.
[7]
N. Sermondade, C. Faure, L. Fezeu et al., “Obesity and increased risk for oligozoospermia and azoospermia,” Archives of Internal Medicine, vol. 172, no. 5, pp. 440–442, 2012.
[8]
D. P. Evenson, L. K. Jost, D. Marshall et al., “Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic,” Human Reproduction, vol. 14, no. 4, pp. 1039–1049, 1999.
[9]
J. E. Chavarro, T. L. Toth, D. L. Wright, J. D. Meeker, and R. Hauser, “Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic,” Fertility and Sterility, vol. 93, no. 7, pp. 2222–2231, 2010.
[10]
A. S. Aggerholm, A. M. Thulstrup, G. Toft, C. H. Ramlau-Hansen, and J. P. Bonde, “Is overweight a risk factor for reduced semen quality and altered serum sex hormone profile?” Fertility and Sterility, vol. 90, no. 3, pp. 619–626, 2008.
[11]
F. H. Duits, M. Van Wely, F. Van Der Veen, and J. Gianotten, “Healthy overweight male partners of subfertile couples should not worry about their semen quality,” Fertility and Sterility, vol. 94, no. 4, pp. 1356–1359, 2010.
[12]
A. A. MacDonald, G. P. Herbison, M. Showell, and C. M. Farquhar, “The impact of body mass index on semen parameters and reproductive hormones in human males: a systematic review with meta-analysis,” Human Reproduction Update, vol. 16, no. 3, Article ID dmp047, pp. 293–311, 2009.
[13]
H. Kodama, H. Kasai, R. Yamaguchi, T. Tanaka, and J. Fukuda, “Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients,” Fertility and Sterility, vol. 68, no. 3, pp. 519–524, 1997.
[14]
J. N. Egwurugwu, A. Nwafor, C. P. Chike et al., “The relationship between body mass index, semen and sex hormones in adult male,” Nigerian Journal of Physiological Sciences, vol. 26, pp. 29–34, 2011.
[15]
I. Fejes, S. Koloszár, Z. Závaczki, J. Daru, J. Sz?ll?si, and A. Pál, “Effect of body weight on testosterone/estradiol ratio in oligozoospermic patients,” Archives of Andrology, vol. 52, no. 2, pp. 97–102, 2006.
[16]
C. Migdal and M. Serres, “Reactive oxygen species and oxidative stress,” Medecine/Sciences, vol. 27, no. 4, pp. 405–412, 2011.
[17]
S. C. Sikka, “Relative impact of oxidative stress on male reproductive function,” Current Medicinal Chemistry, vol. 8, no. 7, pp. 851–862, 2001.
[18]
F. Erdemir, D. Atilgan, F. Markoc, O. Boztepe, B. Suha-Parlaktas, and S. Sahin, “The effect of diet induced obesity on testicular tissue and serum oxidative stress parameters,” Actas Urologicas Espanolas, vol. 36, no. 3, pp. 153–159, 2012.
[19]
D. X. Tan, “Melatonin: a potent, endogenous hydroxyl radical scavenger,” Endocrine Journal, vol. 1, pp. 57–60, 1993.
[20]
Y. Sun, L. W. Oberley, and Y. Li, “A simple method for clinical assay of superoxide dismutase,” Clinical Chemistry, vol. 34, no. 3, pp. 497–500, 1988.
[21]
H. Esterbaur and K. H. Cheeseman, “Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hyroxynonenal,” in Methods in Enzimology Oxygen Radicals in Biological Systems, L. Packer and A. N. Glazer, Eds., vol. 186, pp. 407–421, Academic Press, New York, NY, USA, 1990.
[22]
R. L. Levine, D. Garland, C. N. Oliver et al., “Determination of carbonyl content in oxidatively modified proteins,” Methods in Enzymology, vol. 186, pp. 464–478, 1990.
[23]
N. Sermondade, C. Faure, L. Fezeu, A. G. Shayeb, J. P. Bonde, T. K. Jensen, et al., “BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis,” Human Reproduction Update, vol. 19, no. 3, pp. 221–231, 2013.
[24]
D.-D. Qin, W. Yuan, W.-J. Zhou, Y.-Q. Cui, J.-Q. Wu, and E.-S. Gao, “Do reproductive hormones explain the association between body mass index and semen quality?” Asian Journal of Andrology, vol. 9, no. 6, pp. 827–834, 2007.
[25]
S. P. Weisberg, D. McCann, M. Desai, M. Rosenbaum, R. L. Leibel, and A. W. Ferrante Jr., “Obesity is associated with macrophage accumulation in adipose tissue,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1796–1808, 2003.
[26]
H. Xu, G. T. Barnes, Q. Yang et al., “Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance,” Journal of Clinical Investigation, vol. 112, no. 12, pp. 1821–1830, 2003.
[27]
S. Furukawa, T. Fujita, M. Shimabukuro et al., “Increased oxidative stress in obesity and its impact on metabolic syndrome,” Journal of Clinical Investigation, vol. 114, no. 12, pp. 1752–1761, 2004.
[28]
R. J. Aitken, A. L. Ryan, M. A. Baker, and E. A. McLaughlin, “Redox activity associated with the maturation and capacitation of mammalian spermatozoa,” Free Radical Biology and Medicine, vol. 36, no. 8, pp. 994–1010, 2004.
[29]
S. S. R. Allamaneni, C. K. Naughton, R. K. Sharma, A. J. Thomas Jr., and A. Agarwal, “Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size,” Fertility and Sterility, vol. 82, no. 6, pp. 1684–1686, 2004.
[30]
A. Agarwal and R. A. Saleh, “Role of oxidants in male infertility: rationale, significance, and treatment,” Urologic Clinics of North America, vol. 29, no. 4, pp. 817–827, 2002.
[31]
A. Agarwal, S. Hamamah, and M. Shekarriz, “Reactive oxygen species and fertilizing capacity of spermatozoa,” Contraception, Fertilité, Sexualité, vol. 22, pp. 327–330, 1994.
[32]
A. A. Zalata, A. H. Ahmed, S. S. R. Allamaneni, F. H. Comhaire, and A. Agarwal, “Relationship between acrosin activity of human spermatozoa and oxidative stress,” Asian Journal of Andrology, vol. 6, no. 4, pp. 313–318, 2004.
[33]
P. Dandona, P. Mohanty, H. Ghanim et al., “The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation,” Journal of Clinical Endocrinology and Metabolism, vol. 86, no. 1, pp. 355–362, 2001.
[34]
A. Mohn, M. Catino, R. Capanna, C. Giannini, M. Marcovecchio, and F. Chiarelli, “Increased oxidative stress in prepubertal severely obese children: effect of a dietary restriction-weight loss program,” Journal of Clinical Endocrinology and Metabolism, vol. 90, no. 5, pp. 2653–2658, 2005.
[35]
L. B. H?konsen, A. M. Thulstrup, A. S. Aggerholm et al., “Does weight loss improve semen quality and reproductive hormones? Results from a cohort of severely obese men,” Reproductive Health, vol. 8, article 24, 2011.