Background. Protective factors against Gleason upgrading and its impact on outcomes after surgery warrant better definition. Patients and Methods. Consecutive 343 patients were categorized at biopsy (BGS) and prostatectomy (PGS) as Gleason score, ≤6, 7, and ≥8; 94 patients (27.4%) had PSA recurrence, mean followup 80.2 months (median 99). Independent predictors of Gleason upgrading (logistic regression) and disease-free survival (DFS) (Kaplan-Meier, log-rank) were determined. Results. Gleason discordance was 45.7% (37.32% upgrading and 8.45% downgrading). Upgrading risk decreased by 2.4% for each 1?g of prostate weight increment, while it increased by 10.2% for every 1?ng/mL of PSA, 72.0% for every 0.1 unity of PSA density and was 21 times higher for those with BGS 7. Gleason upgrading showed increased clinical stage ( ), higher tumor extent ( ), extraprostatic extension ( ), positive surgical margins ( ), seminal vesicle invasion ( ), less “insignificant” tumors ( ), and also worse DFS, , , . However, when setting the final Gleason score (BGS to PGS 7 versus BGS 7 to PGS 7), avoiding allocation bias, DFS impact is not confirmed, , , Conclusions. Gleason upgrading is substantial and confers worse outcomes. Prostate weight is inversely related to upgrading and its protective effect warrants further evaluation. 1. Introduction Gleason score (GS) remains the most widely accepted grading system in the evaluation of prostate cancer and is one of the most important factors influencing tumor prognosis and treatment choice for patients diagnosed with prostate cancer [1]. Nevertheless, several studies have reported a poor Gleason score concordance between biopsy and radical prostatectomy (RP) specimens [1–4]. Failure of accurately obtaining the biopsy specimen to precisely reflect the true nature of the cancer is especially important for patients considering nonextirpative treatments, such as external beam radiotherapy, brachytherapy, cryotherapy, or expectant management [5]. Also, whether the clinical outcome of Gleason score discordance is similar to that of concordant tumors of the higher grade, concordant tumors of the lower grade, or somewhere in between remains to be solved. Targeting a better guidance to patients during their treatment decision process, we investigated factors predictive of Gleason score upgrading between biopsy and surgical specimens and the impact of discordance scores on postoperative outcomes. 2. Materials and Methods 2.1. Patient Selection A prospectively maintained database of 360 consecutive patients who underwent 10–12 core
References
[1]
J. H. Pinthus, M. Witkos, N. E. Fleshner et al., “Prostate cancers scored as Gleason 6 on prostate biopsy are frequently Gleason 7 tumors at radical prostatectomy: implication on outcome,” Journal of Urology, vol. 176, no. 3, pp. 979–984, 2006.
[2]
C. R. King, J. E. McNeal, H. Gill, and J. C. Presti Jr., “Extended prostate biopsy scheme improves reliability of Gleason grading: implications for radiotherapy patients,” International Journal of Radiation Oncology Biology Physics, vol. 59, no. 2, pp. 386–391, 2004.
[3]
F. K. Chun, T. Steuber, A. Erbersdobler et al., “Development and internal validation of a nomogram predicting the probability of prostate cancer Gleason sum upgrading between biopsy and radical prostatectomy pathology,” European Urology, vol. 49, no. 5, pp. 820–826, 2006.
[4]
M. L. Gonzalgo, P. J. Bastian, L. A. Mangold et al., “Relationship between primary Gleason pattern on needle biopsy and clinicopathologic outcomes among men with Gleason score 7 adenocarcinoma of the prostate,” Urology, vol. 67, no. 1, pp. 115–119, 2006.
[5]
R. Kv?le, B. M?ller, R. Wahlqvist et al., “Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population-based study,” BJU International, vol. 103, no. 12, pp. 1647–1654, 2009.
[6]
A. Billis, L. A. Magna, and U. Ferreira, “Correlation between tumor extent in radical prostatectomies and preoperative PSA, histological grade, surgical margins, and extraprostatic extension: application of a new practical method for tumor extent evaluation,” International Braz J Urol, vol. 29, no. 2, pp. 113–120, 2003.
[7]
J. I. Epstein, W. C. Allsbrook Jr., M. B. Amin et al., “The 2005 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma,” American Journal of Surgical Pathology, vol. 29, no. 9, pp. 1228–1242, 2005.
[8]
M. S. Cookson, G. Aus, A. L. Burnett et al., “Variation in the definition of biochemical recurrence in patients treated for localized prostate cancer: the American Urological Association Prostate guidelines for localized prostate cancer update panel report and recommendations for a standard in the reporting of surgical outcomes,” Journal of Urology, vol. 177, no. 2, pp. 540–545, 2007.
[9]
D. Colleselli, A. E. Pelzer, E. Steiner et al., “Upgrading of Gleason score 6 prostate cancers on biopsy after prostatectomy in the low and intermediate tPSA range,” Prostate Cancer and Prostatic Diseases, vol. 13, no. 2, pp. 182–185, 2010.
[10]
R. Montironi, R. Mazzucchelli, M. Scarpelli et al., “Prostate carcinoma II: prognostic factors in prostate needle biopsies,” BJU International, vol. 97, no. 3, pp. 492–497, 2006.
[11]
N. J. Fitzsimons, J. C. Presti Jr., C. J. Kane et al., “Is biopsy Gleason score independently associated with biochemical progression following radical prostatectomy after adjusting for pathological Gleason score?” Journal of Urology, vol. 176, no. 6, part 1, pp. 2453–2458, 2006.
[12]
M. Müntener, J. I. Epstein, D. J. Hernandez et al., “Prognostic significance of Gleason score discrepancies between needle biopsy and radical prostatectomy,” European Urology, vol. 53, no. 4, pp. 767–776, 2008.
[13]
F. B. Serkin, D. W. Soderdahl, J. Cullen, Y. Chen, and J. Hernandez, “Patient risk stratification using Gleason score concordance and upgrading among men with prostate biopsy Gleason score 6 or 7,” Urologic Oncology, vol. 28, no. 3, pp. 302–307, 2010.
[14]
S. J. Freedland, C. J. Kane, C. L. Amling, W. J. Aronson, M. K. Terris, and J. C. Presti Jr., “Upgrading and downgrading of prostate needle biopsy specimens: risk factors and clinical implications,” Urology, vol. 69, no. 3, pp. 495–499, 2007.
[15]
P. D. Sved, P. Gomez, M. Manoharan, S. S. Kim, and M. S. Soloway, “Limitations of biopsy Gleason grade: implications for counseling patients with biopsy Gleason score 6 prostate cancer,” Journal of Urology, vol. 172, no. 1, pp. 98–102, 2004.
[16]
C. Ozden, C. V. Oztekin, O. Ugurlu, S. Gokkaya, M. Yaris, and A. Memis, “Correlation between upgrading of prostate biopsy and biochemical failure and unfavorable pathology after radical prostatectomy,” Urologia Internationalis, vol. 83, no. 2, pp. 146–150, 2009.
[17]
S. K. Hong, B. K. Han, S. T. Lee et al., “Prediction of Gleason score upgrading in low-risk prostate cancers diagnosed via multi (≥12)-core prostate biopsy,” World Journal of Urology, vol. 27, no. 2, pp. 271–276, 2009.
[18]
F. Dong, J. S. Jones, A. J. Stephenson, C. Magi-Galluzzi, A. M. Reuther, and E. A. Klein, “Prostate cancer volume at biopsy predicts clinically significant upgrading,” Journal of Urology, vol. 179, no. 3, pp. 896–900, 2008.
[19]
J. J. Liu, J. D. Brooks, M. Ferrari, R. Nolley, and J. C. Presti Jr., “Small prostate size and high grade disease-biology or artifact?” Journal of Urology, vol. 185, no. 6, pp. 2108–2111, 2011.
[20]
T. C. Ngo, S. L. Conti, R. Shinghal, and J. C. Presti Jr., “Prostate size does not predict high grade cancer,” Journal of Urology, vol. 187, no. 2, pp. 477–480, 2012.
[21]
A. Rahmouni, A. Yang, C. M. Tempany et al., “Accuracy of in-vivo assessment of prostatic volume by MRI and transrectal ultrasonography,” Journal of Computer Assisted Tomography, vol. 16, no. 6, pp. 935–940, 1992.
[22]
M. Varma and J. M. Morgan, “The weight of the prostate gland is an excellent surrogate for gland volume,” Histopathology, vol. 57, no. 1, pp. 55–58, 2010.