Background. Radical prostatectomy is an effective treatment for clinically localized prostate cancer. The three approaches in current use have been extensively compared in observational studies, which have methodological limitations. Objective. To compare the efficacy and safety of three radical prostatectomy approaches in patients with localized prostate cancer: open, laparoscopic, and robotic-assisted laparoscopic surgery. Materials and Methods. A systematic review of the literature was carried out. Databases MEDLINE, EMBASE, LILACS, and CENTRAL were searched for randomized clinical trials that directly compared two or more radical prostatectomy approaches. Selection criteria, methodological rigor, and risk of bias were evaluated by two independent researchers using Cochrane Collaboration’s tools. Results. Three trials were included. In one study, laparoscopic surgery was associated with fewer blood loss and transfusion rates than the open procedure, in spite of longer operating time. The other two trials compared laparoscopic and robotic-assisted surgery in which no differences in perioperative outcomes were detected. Nevertheless, robotic-assisted prostatectomy showed more favorable erectile function and urinary continence recovery. Conclusion. At the present time, no clear advantage can be attributed to any of the existing prostatectomy approaches in terms of oncologic outcomes. However, some differences in patient-related outcomes favor the newer methods. Larger trials are required. 1. Background Radical prostatectomy constitutes a major cornerstone in the treatment of localized prostate cancer among patients whose life expectancy is greater than ten years [1]. Despite the fact that open prostatectomy is still the most widely used procedure in developing countries, state-of-the-art technologies such as laparoscopic and robotic-assisted laparoscopic prostatectomy offer minimally invasive alternatives to open surgery. Although these surgical approaches are widely used, the quality of evidence that supports their efficacy is low. Most studies compare noncontemporary surgical series with retrospective data collection with short-term follow-up periods, thus increasing the risk of bias in their conclusions. Several reviews summarize these observational studies [2–14], showing very high heterogeneity, prognostic imbalance, and low adjustment for confounding among the uncontrolled studies, demonstrating the need for evidence provided by clinical trials, which reduce the high risk of bias and allow a more valid conclusion about which of the methods is most
References
[1]
National Collaborating Centre for Cancer (NCC-C), “Prostate cancer: diagnosis and treatment,” NICE Clinical Guideline 58S, NICE, Cardiff, UK, 2008.
[2]
J. I. Martínez-Salamanca and J. R. Otero, “Critical comparative analysis between open, laparoscopic and robotic radical prostatectomy: perioperative morbidity and oncological results (part I),” Archivos Espanoles de Urologia, vol. 60, no. 7, pp. 755–765, 2007.
[3]
J. R. Otero and J. I. Martínez-Salamanca, “Critical comparative analysis between open, laparoscopic and robotic radical prostatectomy: urinary continence and sexual function (part II),” Archivos Espanoles de Urologia, vol. 60, no. 7, pp. 767–776, 2007.
[4]
J. K. Parsons and J. L. Bennett, “Outcomes of retropubic, laparoscopic, and robotic-assisted prostatectomy,” Urology, vol. 72, no. 2, pp. 412–416, 2008.
[5]
V. Ficarra, G. Novara, W. Artibani et al., “Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a systematic review and cumulative analysis of comparative studies,” European Urology, vol. 55, no. 5, pp. 1037–1063, 2009.
[6]
R. F. Coelho, B. Rocco, M. B. Patel et al., “Retropubic, laparoscopic, and robot-assisted radical prostatectomy: a critical review of outcomes reported by high-volume centers,” Journal of Endourology, vol. 24, no. 12, pp. 2003–2015, 2010.
[7]
J. Ruiz-Aragón, S. Márquez-Peláez, and L. G. Luque Romero, “Erectile dysfunction in patients with prostate cancer who have undergone surgery: systematic review of literature,” Actas Urologicas Espanolas, vol. 34, no. 8, pp. 677–685, 2010.
[8]
D. C. Kang, M. J. Hardee, S. F. Fesperman, T. L. Stoffs, and P. Dahm, “Low quality of evidence for robot-assisted laparoscopic prostatectomy: results of a systematic review of the published literature,” European Urology, vol. 57, no. 6, pp. 930–937, 2010.
[9]
A. Tewari, P. Sooriakumaran, D. Bloch, U. Seshadri-Kreaden, A. E. Hebert, and P. Wiklund, “Positive surgical margin and perioperative complication rates of primary surgical treatments for prostate cancer: a systematic review and meta-analysis comparing retropubic, laparoscopic, and robotic prostatectomy,” European Urology, vol. 62, no. 1, pp. 1–15, 2012.
[10]
G. Novara, V. Ficarra, S. Mocellin, et al., “Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy,” European Urology, vol. 62, no. 3, pp. 382–404, 2012.
[11]
V. Ficarra, G. Novara, R. C. Rosen, et al., “Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy,” European Urology, vol. 62, no. 3, pp. 405–417, 2012.
[12]
V. Ficarra, G. Novara, T. E. Ahlering, et al., “Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy,” European Urology, vol. 62, no. 3, pp. 418–430, 2012.
[13]
G. Novara, V. Ficarra, R. C. Rosen, et al., “Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy,” European Urology, vol. 62, no. 3, pp. 431–452, 2012.
[14]
P. S. Moran, M. O'Neill, C. Teljeur, et al., “Robot-assisted radical prostatectomy compared with open and laparoscopic approaches: a systematic review and meta-analysis,” International Journal of Urology, vol. 20, no. 3, pp. 312–321, 2013.
[15]
J. P. T. Higgins and S. Green, Eds., Cochrane Handbook for Systematic Reviews of Interventions Version 5. 1. 0 (Updated March 2011), The Cochrane Collaboration, 2011.
[16]
G. Guazzoni, A. Cestari, R. Naspro et al., “Intra- and peri-operative outcomes comparing radical retropubic and laparoscopic radical prostatectomy: results from a prospective, randomised, single-surgeon study,” European Urology, vol. 50, no. 1, pp. 98–104, 2006.
[17]
A. D. Asimakopoulos, C. T. Pereira Fraga, F. Annino, P. Pasqualetti, A. A. Calado, and C. Mugnier, “Randomized comparison between laparoscopic and robot-assisted nerve-sparing radical prostatectomy,” The Journal of Sexual Medicine, vol. 8, no. 5, pp. 1503–1512, 2011.
[18]
F. Porpiglia, I. Morra, M. Lucci Chiarissi, et al., “Randomised controlled trial comparing laparoscopic and robot-assisted radical prostatectomy,” European Urology, vol. 63, no. 4, pp. 606–614, 2013.
[19]
G. Garas, A. Ibrahim, H. Ashrafian et al., “Evidence-based surgery: barriers, solutions, and the role of evidence synthesis,” World Journal of Surgery, vol. 36, no. 8, pp. 1723–1731, 2012.
[20]
N. S. Abraham, C. J. Byrne, J. M. Young, and M. J. Solomon, “Meta-analysis of well-designed nonrandomized comparative studies of surgical procedures is as good as randomized controlled trials,” Journal of Clinical Epidemiology, vol. 63, no. 3, pp. 238–245, 2010.
[21]
W. W. Schuessler, P. G. Schulam, R. V. Clayman, and L. R. Kavoussi, “Laparoscopic radical prostatectomy: initial short-term experience,” Urology, vol. 50, no. 6, pp. 854–857, 1997.
[22]
J. E. Anderson, D. C. Chang, J. K. Parsons, and M. A. Talamini, “The first national examination of outcomes and trends in robotic surgery in the United States,” Journal of the American College of Surgeons, vol. 215, no. 1, pp. 107–114, 2012.
[23]
K. K. Badani, S. Kaul, and M. Menon, “Evolution of robotic radical prostatectomy: assessment after 2766 procedures,” Cancer, vol. 110, no. 9, pp. 1951–1958, 2007.
[24]
V. R. Patel, K. J. Palmer, G. Coughlin, and S. Samavedi, “Robot-assisted laparoscopic radical prostatectomy: perioperative outcomes of 1500 cases,” Journal of Endourology, vol. 22, no. 10, pp. 2299–2305, 2008.
[25]
B. Nelson, M. Kaufman, G. Broughton et al., “Comparison of length of hospital stay between radical retropubic prostatectomy and robotic assisted laparoscopic prostatectomy,” Journal of Urology, vol. 177, no. 3, pp. 929–931, 2007.