全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

-DTPA Study to Validate an Experimental Model of Ureteral Obstruction in Rabbits: Preliminary Results

DOI: 10.1155/2013/929620

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To create a ureteral obstruction experimental model that can be proved through -DTPA renal scintigraphy and histopathological studies, without causing total renal function loss. Materials and Methods. Ten New Zealand white rabbits were submitted to a surgical experiment to create a model of unilateral obstruction to urinary flow. Surgery procedure provided unilateral ureteral obstruction (left kidney) to urinary flow and posteriorly was evaluated by -DTPA renal scintigraphy and histopathological study. -DTPA renal study was performed to detect and quantify signs of obstruction and to evaluate renal function. Statistical analysis was performed through the Student -test with a significance level of . Results. Nine of the ten rabbits presented left renal unit obstruction and one nonobstructive on the -DTPA and histopathological studies. All the right renal units, which were not submitted to surgical procedure, were nonobstructed by the studies. There was a general agreement between scintigraphy and histopathological results in both groups. Conclusion. The experimental model promoted the creation of ureteral obstruction in rabbits, confirmed by nuclear medicine scintigraphy and histopathology, and could be used in further studies to better understand urinary obstruction. 1. Introduction Pelvi-ureteric junction (PUJ) obstruction is one of the most frequent congenital anomalies of the urinary tract system. It is associated with pain, hydronephrosis, urinary tract infections, and eventually loss of renal function [1, 2]. It affects around 40% to 60% of all newborns with hydronephrosis [3], two times more common in males, and may be bilateral in 5% to 15% of cases [1, 4]. PUJ obstruction may be caused by intrinsic factors, like aperistaltic ureteral segment, obstructive fold mucosa, ureteral polyp, or ureteral stenosis [5]. Among extrinsic factors stands inferior renal polar vessel crossing anteriorly the PUJ [6]. Treatment varies from clinical observation to surgery. There are some surgical modalities available to correct the PUJ obstruction, differing from the open pyeloplasty to the latest in technology such as robotic assisted surgeries and endourological procedures [7–9]. Currently scientific literature is short in ureteral obstruction models that accurately reproduce the clinical and microscopic features of this infirmity [10–12]. The creation of a standardized experimental model that would be able to cause obstructive disturbance without leading to renal function loss would provide information capable of enhancing not only the diagnosis but

References

[1]  S. Halachmi and G. Pillar, “Congenital urological anomalies diagnosed in adulthood—management considerations,” Journal of Pediatric Urology, vol. 4, no. 1, pp. 2–7, 2008.
[2]  K. R. Anderson and R. M. Weiss, “Physiology and evaluation of ureteropelvic junction obstruction,” Journal of Endourology, vol. 10, no. 2, pp. 87–91, 1996.
[3]  C.-C. Liang, P.-J. Cheng, C.-J. Lin, H.-W. Chen, A.-S. Chao, and S.-D. Chang, “Outcome of prenatally diagnosed fetal hydronephrosis,” The Journal of Reproductive Medicine for the Obstetrician and Gynecologist, vol. 47, no. 1, pp. 27–32, 2002.
[4]  D. M. Feldman, M. Decambre, E. Kong et al., “Evaluation and follow-up of fetal hydronephrosis,” Journal of Ultrasound in Medicine, vol. 20, no. 10, pp. 1065–1069, 2001.
[5]  C. Mendelsohn, “Functional obstruction: the renal pelvis rules,” The Journal of Clinical Investigation, vol. 113, no. 7, pp. 957–959, 2004.
[6]  J. H. Yiee, S. Johnson-Welch, L. A. Baker, and D. T. Wilcox, “Histologic differences between extrinsic and intrinsic ureteropelvic junction obstruction,” Urology, vol. 76, no. 1, pp. 181–184, 2010.
[7]  M. C. Ost, J. D. Kaye, M. J. Guttman, B. R. Lee, and A. D. Smith, “Laparoscopic pyeloplasty versus antegrade endopyelotomy: comparison in 100 patients and a new algorithm for the minimally invasive treatment of ureteropelvic junction obstruction,” Urology, vol. 66, no. 5, pp. 47–51, 2005.
[8]  J. P. Yurkanin and G. J. Fuchs, “Laparoscopic dismembered pyeloureteroplasty: a single institution's 3-year experience,” Journal of Endourology, vol. 18, no. 8, pp. 765–769, 2004.
[9]  S. Chuanyu, X. Guowei, X. Ke, D. Qiang, and Z. Yuanfang, “Retroperitoneal laparoscopic dismembered Anderson-Hynes pyeloplasty in treatment of ureteropelvic junction obstruction (report of 150 cases),” Urology, vol. 74, no. 5, pp. 1036–1040, 2009.
[10]  A. H. Ulm and F. Miller, “An operation to produce experimental reversible hydronephrosis in dog,” The Journal of Urology, vol. 88, pp. 337–341, 1962.
[11]  P. C. Ryan and J. M. Fitzpatrick, “Partial ureteric obstruction: a new variable canine experimental model,” The Journal of Urology, vol. 137, no. 5, pp. 1034–1038, 1987.
[12]  K. M. Kim, D. K. Kim, and H. Choi, “Partial ureteral obstruction: a new experimental model in rats,” Seoul Journal of Medicine, vol. 34, no. 1, pp. 55–61, 1993.
[13]  B. L. Shulkin, G. A. Mandell, J. A. Cooper et al., “Procedure guideline for diuretic renography in children 3.0,” Journal of Nuclear Medicine Technology, vol. 36, no. 3, pp. 162–168, 2008.
[14]  E. J. Fine, “Interventions in renal scintirenography,” Seminars in Nuclear Medicine, vol. 29, no. 2, pp. 128–145, 1999.
[15]  M. C. L. Lima, M. L. De Lima, C. F. V. Pepe et al., “Technetium-99m-L,L-ethylenedicysteine is more effective than technetium-99m diethylenetriamine penta-acetic acid for excluding obstruction in patients with pyelocalicinal dilation,” Urology, vol. 76, no. 2, pp. 283–288, 2010.
[16]  G. S. Hill, “Calcium and the Kidney, Hydronephrosis,” in Heptinstall's Pathology of the Kidney, J. C. Jennette, J. L. Olson, M. M. Schwartz, and F. G. Silva, Eds., pp. 891–936, Lippincott-Raven Publishers, Philadelphia, Pa, USA, 1998.
[17]  D. L. MacLellan, D. Mataija, A. Doucette et al., “Alterations in urinary metabolites due to unilateral ureteral obstruction in a rodent model,” Molecular BioSystems, vol. 7, no. 7, pp. 2181–2188, 2011.
[18]  G. Wang, W. Yuan, T.-H. Kwon et al., “Age-related changes in expression in renal AQPs in response to congenital, partial, unilateral ureteral obstruction in rats,” Pediatric Nephrology, vol. 27, no. 1, pp. 83–94, 2012.
[19]  J. P. Fitzgerald, S.-Y. Chou, I. Franco et al., “Atorvastatin ameliorates tubulointerstitial fibrosis and protects renal function in chronic partial ureteral obstruction cases,” The Journal of Urology, vol. 182, no. 4, pp. 1860–1868, 2009.
[20]  N. Botto, R. Azoulay, M. Peuchmaur, and A. El Ghoneimi, “Renal parenchymal fibrosis and atrophy are not correlated with upper tract dilatation: long-term study of partial unilateral ureteral obstruction in neonatal mice,” Journal of Pediatric Urology, vol. 7, no. 3, pp. 310–316, 2011.
[21]  S. Josephson, B. Robertson, G. Claesson, and I. Wikstad, “Experimental obstructive hydronephrosis in newborn rats. I. Surgical technique and long-term morphologic effects,” Investigative Urology, vol. 17, no. 6, pp. 478–483, 1980.
[22]  H. Huland, D. Gonnermann, B. Werner, and U. Possin, “A new test to predict reversibility of hydronephrotic atrophy after stable partial unilateral ureteral obstruction,” The Journal of Urology, vol. 140, no. 6, pp. 1591–1594, 1988.
[23]  M. Kekom?ki, H. Rikalainen, P. Ruotsalainen, and C. Bertenyi, “Correlates of diuretic renography in experimental hydronephrosis,” The Journal of Urology, vol. 141, no. 2, pp. 391–394, 1989.
[24]  P. M. Andrews, B. S. Khirabadi, and B. C. Bengs, “Using tandem scanning confocal microscopy to predict the status of donor kidneys,” Nephron, vol. 91, no. 1, pp. 148–155, 2002.
[25]  I. A. Sammut, K. Burton, E. Balogun et al., “Time-dependent impairment of mitochondrial function after storage and transplantation of rabbit kidneys,” Transplantation, vol. 69, no. 7, pp. 1265–1275, 2000.
[26]  M. J. Hanley, “Studies on acute disease models,” Kidney International, vol. 22, no. 5, pp. 536–545, 1982.
[27]  R. Dimitrov, D. Kostov, K. Stamatova, and V. Yordanova, “Anatomotopographical and morphological analysis of normal kidneys of rabbits (Oryctolagus cuniculus),” Trakia Journal of Sciences, vol. 10, no. 2, pp. 79–84, 2012.
[28]  D. S. Woodruff-Pak, “Aging and classical conditioning: parallel studies in rabbits and humans,” Neurobiology of Aging, vol. 9, no. 5-6, pp. 511–522, 1988.
[29]  R. R. Fox, “The rabbit (Oryctolagus cuniculus) and research on aging,” Experimental Aging Research, vol. 6, no. 3, pp. 235–248, 1980.
[30]  F. T. Hammad, W. J. Lammers, B. Stephen, and L. Lubbad, “Propagation of the electrical impulse in reversible unilateral ureteral obstruction as determined at high electrophysiological resolution,” The Journal of Urology, vol. 185, no. 2, pp. 744–750, 2011.
[31]  J. Fichtner, F. G. Boineau, J. E. Lewy, R. K. Sibley, R. C. Vari, and L. M. D. Shortliffe, “Congenital unilateral hydronephrosis in a rat model: continuous renal pelvic and bladder pressures,” The Journal of Urology, vol. 152, no. 2, pp. 652–657, 1994.
[32]  M. Lima, R. Miyaoka, J. Moro, and C. D'Ancona, “Laparoscopic nephrectomy for xanthogranulomatous pyelonephritis-are there predictive factors for success?” Clinics, vol. 67, no. 8, pp. 907–909, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133