Objective. To study the impact of helmet use on outcomes after recreational vehicle accidents. Methods. This is an observational cohort of adult and pediatric patients who sustained a TBI while riding a recreational vehicle. Recreational vehicles included bicycles, motorcycles, and all-terrain vehicles (ATVs), as well as a category for other vehicles such as skateboards and scooters. Results. Lack of helmet use was significantly associated with having a more severe traumatic brain injury and being admitted to the hospital. Similarly, 25% of those who did wearing a helmet were admitted to the ICU versus 36% of those who did not ( ). The hospital length of stay was significantly greater for patients who did not use helmets. Conclusion. Lack of helmet use is significantly correlated with abnormal neuroimaging and admission to the hospital and ICU; these data support a call for action to implement more widespread injury prevention and helmet safety education and advocacy. 1. Introduction In recent years, the use of recreational vehicles (RVs), such as on- and off-road motorcycles and all-terrain vehicles (ATVs), has increased significantly in popularity. Nearly one in five Americans (19.2%) aged sixteen and older participated one or more times in off-highway recreation within the past year. The use of these vehicles is especially popular in the under-thirty age group [1]. Unfortunately, RV use puts a person at risk of sustaining a traumatic brain injury (TBI), which is a leading cause of injury-related death and disability in the US [2]. Incidence of these injuries as a result of RV use may be on the rise. While the overall rate of motor vehicle-related TBI deaths decreased between 1993 and 2007, the rate of motorcycle-related TBI deaths actually increased significantly during those years [2]. In fact, although motorcycles account for only 2% of vehicle registrations in the US, motorcycle accidents are responsible for 10% of traffic-related deaths [3]. Bicycle riding is also a common activity particularly among children. In USA, approximately 70% of children aged from 5 to 14 ride bicycles. Head and brain injuries during a crash are the worst danger associated with bicycle riding. According to the US Centers for Disease Control, head injury is the most common cause of death and serious disability from bicycle crashes. In addition to being a leading cause of death, TBIs can dramatically diminish quality of life for patients who survive. In one study, employment rate prior to sustaining a moderate or severe TBI was 80%; at three months after injury,
References
[1]
H. Cordell, C. Betz, G. Green, and B. Stephens, “Off-highway vehicle recreation in the United States and its regions and states: a national report from the National Survey on Recreation and the Environment (NSRE),” pp. 8–12, 2008, http://www.fs.fed.us/recreation/programs/ohv/IrisRec1rpt.pdf.
[2]
V. G. Coronado, L. Xu, S. V. Basavaraju et al., “Surveillance for traumatic brain injury-related deaths—United States, 1997–2007,” Morbidity and Mortality Weekly Report, vol. 60, no. 5, pp. 1–32, 2011.
[3]
M. Byrnes and S. Gerberich, “Motorcycle helmet use and legislation: a systematic review of the literature,” Minnesota Medicine, vol. 95, no. 1, pp. 60–65, 2012.
[4]
E. Grauwmeijer, M. H. Heijenbrok-Kal, I. K. Haitsma, and G. M. Ribbers, “A prospective study on employment outcome 3 years after moderate to severe traumatic brain injury,” Archives of Physical Medicine and Rehabilitation, vol. 93, no. 6, pp. 993–999, 2012.
[5]
M. P. Alexander, “Mild traumatic brain injury: pathophysiology, natural history, and clinical management,” Neurology, vol. 45, no. 7, pp. 1253–1260, 1995.
[6]
L. G. Stead, A. N. Bodhit, P. S. Patel et al., “TBI surveillance using the common data elements for traumatic brain injury: a population study,” International Journal of Emergency Medicine, vol. 6, no. 1, article 5, 2013.
D. C. Thompson and M. Q. Patterson, “Cycle helmets and the prevention of injuries. Recommendations for competitive sport,” Sports Medicine, vol. 25, no. 4, pp. 213–219, 1998.
[9]
T. A. Mattei, B. J. Bond, C. R. Goulart, C. A. Sloffer, M. J. Morris, and J. J. Lin, “Performance analysis of the protective effects of bicycle helmets during impact and crush tests in pediatric skull models. Laboratory investigation,” Journal of Neurosurgery: Pediatrics, vol. 10, no. 6, pp. 490–497, 2012.
[10]
D. C. Thompson, F. P. Rivara, and R. Thompson, “Helmets for preventing head and facial injuries in bicyclists,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD001855, 2000.
[11]
N. Persaud, E. Coleman, D. Zwolakowski, B. Lauwers, and D. Cass, “Nonuse of bicycle helmets and risk of fatal head injury: a proportional mortality, case-control study,” Canadian Medical Association Journal, vol. 184, no. 17, pp. 921–923, 2012.
[12]
B. Liu, R. Ivers, R. Norton, S. Blows, and S. K. Lo, “Helmets for preventing injury in motorcycle riders,” Cochrane Database of Systematic Reviews, no. 2, Article ID CD004333, 2004.
[13]
J. C. Hundley, P. D. Kilgo, P. R. Miller et al., “Non-helmeted motorcyclists: a burden to society? A study using the national trauma data bank,” Journal of Trauma—Injury, Infection and Critical Care, vol. 57, no. 5, pp. 944–949, 2004.
[14]
K. G. Hooten and G. J. A. Murad, “Helmeted versus nonhelmeted: a retrospective review of outcomes from 2-wheeled vehicle accidents at a level 1 trauma center,” Clinical Neurosurgery, vol. 59, pp. 126–130, 2012.
[15]
M. Miller, D. Davidov, R. Tillotson, C. Whiteman, T. Marshall, and O. Lander, “Injury prevention and recreational all-terrain vehicle use: the impact of helmet use in West Virginia,” West Virginia Medical Journal, vol. 108, no. 3, pp. 96–101, 2012.
[16]
P. Unni, S. E. Morrow, and B. L. Shultz, “Analysis of pediatric all-terrain vehicle trauma data in Middle Tennessee: implications for injury prevention,” Journal of Trauma and Acute Care Surgery, vol. 73, no. 4, supplement 3, pp. 277–280, 2012.
[17]
T. S. Mueller, “Scooter crashes at university: intervention tactics for modified behavior and helmet use,” Traffic Injury Prevention, vol. 14, no. 4, pp. 335–339, 2013.
[18]
J. P. Goldstein, “The effect of motorcycle helmet use on the probability of fatality and the severity of head and neck injuries: a latent variable framework,” Evaluation Review, vol. 10, no. 3, pp. 355–375, 1986.
[19]
S. S. Ooi, S. V. Wong, J. S. Yeap, and R. Umar, “Relationship between cervical spine injury and helmet use in motorcycle road crashes,” Asia-Pacific Journal of Public Health, vol. 23, no. 4, pp. 608–619, 2011.
[20]
A. Moskal, J. L. Martin, and B. Laumon, “Helmet use and the risk of neck or cervical spine injury among users of motorized two-wheel vehicles,” Injury Prevention, vol. 14, no. 4, pp. 238–244, 2008.
[21]
J. G. Crompton, C. Bone, T. Oyetunji et al., “Motorcycle helmets associated with lower risk of cervical spine injury: debunking the myth,” Journal of the American College of Surgeons, vol. 212, no. 3, pp. 295–300, 2011.
[22]
F. Servadei, C. Begliomini, E. Gardini, M. Giustini, F. Taggi, and J. Kraus, “Effect of Italy's motorcycle helmet law on traumatic brain injuries,” Injury Prevention, vol. 9, no. 3, pp. 257–260, 2003.
[23]
D. J. Houston and L. E. Richardson, “Motorcyclist fatality rates and mandatory helmet-use laws,” Accident Analysis and Prevention, vol. 40, no. 1, pp. 200–208, 2008.
[24]
H. Dao, J. Lee, R. Kermani et al., “Cervical spine injuries and helmet laws: a population-based study,” Journal of Trauma and Acute Care Surgery, vol. 72, no. 3, pp. 638–641, 2012.
[25]
R. S. Williams, J. Graham, J. C. Helmkamp, R. Dick, T. Thompson, and M. E. Aitken, “A trial of an all-terrain vehicle safety education video in a community-based hunter education program,” Journal of Rural Health, vol. 27, no. 3, pp. 255–262, 2011.
[26]
J. A. Novak, J. W. Hafner, J. C. Aldag, and M. A. Getz, “Evaluation of a standardized all-terrain safety education intervention for youth in rural central Illinois,” Journal of Primary Care and Community Health, vol. 4, no. 1, pp. 8–13, 2013.
[27]
P. Rousseau, A. Post, and T. B. Hoshizaki, “A comparison of peak linear and angular headform accelerations using ice hockey helmets,” Journal of ASTM International, vol. 6, no. 1, article 11, 2009.