Cardiac arrest is a leading cause of mortality among firefighters. We sought to develop a valid method for determining the costs of a workplace prevention program for firefighters. In 2012, we developed a draft framework using human resource accounting and in-depth interviews with experts in the firefighting and insurance industries. The interviews produced a draft cost model with 6 components and 26 subcomponents. In 2013, we randomly sampled 100 fire chiefs out of >7,400 affiliated with the International Association of Fire Chiefs. We used the Content Validity Index (CVI) to identify the content valid components of the draft cost model. This was accomplished by having fire chiefs rate the relevancy of cost components using a 4-point Likert scale (highly relevant to not relevant). We received complete survey data from 65 fire chiefs (65% response rate). We retained 5 components and 21 subcomponents based on CVI scores ≥0.70. The five main components include, (1) investment costs, (2) orientation and training costs, (3) medical and pharmaceutical costs, (4) education and continuing education costs, and (5) maintenance costs. Data from a diverse sample of fire chiefs has produced a content valid method for calculating the cost of a prevention program among firefighters. 1. Introduction Firefighters in the United States suffer cardiac-related line of duty death (LODD) at exceedingly high rates with events 10–100 times more likely to occur during, or in the hours immediately following, fire suppression [1]. The underlying mechanism for cardiovascular events among firefighters is unknown, but it is believed to be multifactorial including both occupational and lifestyle factors. Occupational factors such as shift work, lifestyle factors, and the exposures associated with fire suppression (e.g., smoke, chemicals) may predispose the firefighter to earlier onset of heart disease [2]. Additionally, rates of hypertension, overweight, and obesity within the fire service exceed those seen in the general population increasing the baseline risk for a cardiovascular event [3, 4]. Fire suppression activities result in significant cardiovascular strain and provide potential triggers for ischemic events (e.g., myocardial infarction, stroke). There is a rapid rise in heart rate following the activation of a fire department which may persist for as long as 20 minutes [5, 6]. Even in cases where heavy work is not being performed, the repetitive upper body exercise associated with tool use raises heart rate disproportionately to oxygen consumption [7]. Finally, the heat
References
[1]
S. N. Kales, E. S. Soteriades, C. A. Christophi, and D. C. Christiani, “Emergency duties and deaths from heart disease among firefighters in the United States,” New England Journal of Medicine, vol. 356, no. 12, pp. 1207–1215, 2007.
[2]
E. S. Soteriades, D. L. Smith, A. J. Tsismenakis, D. M. Baur, and S. N. Kales, “Cardiovascular disease in US firefighters: a systematic review,” Cardiology in Review, vol. 19, no. 4, pp. 202–215, 2011.
[3]
W. S. Poston, C. K. Haddock, S. A. Jahnke, N. Jitnarin, B. C. Tuley, and S. N. Kales, “The prevalence of overweight, obesity, and substandard fitness in a population-based firefighter cohort,” Journal of Occupational and Environmental Medicine, vol. 53, no. 3, pp. 266–273, 2011.
[4]
S. N. Kales, A. J. Tsismenakis, C. Zhang, and E. S. Soteriades, “Blood pressure in firefighters, police officers, and other emergency responders,” American Journal of Hypertension, vol. 22, no. 1, pp. 11–20, 2009.
[5]
D. Hostler, S. E. Reis, J. C. Bednez, S. Kerin, and J. Suyama, “Comparison of active cooling devices with passive cooling for rehabilitation of firefighters performing exercise in thermal protective clothing: a report from the fireground rehab evaluation (FIRE) trial,” Prehospital Emergency Care, vol. 14, no. 3, pp. 300–309, 2010.
[6]
D. Colburn, J. Suyama, S. E. Reis et al., “A comparison of cooling techniques in firefighters after a live burn evolution,” Prehospital Emergency Care, vol. 15, no. 2, pp. 226–232, 2011.
[7]
B. A. Franklin, K. Bonzheim, S. Gordon, and G. C. Timmis, “Snow shoveling: a trigger for acute myocardial infarction and sudden coronary death,” American Journal of Cardiology, vol. 77, no. 10, pp. 855–858, 1996.
[8]
D. L. Smith, S. J. Petruzzello, E. Goldstein et al., “Effect of live-fire training drills on firefighters'? platelet number and function,” Prehospital Emergency Care, vol. 15, no. 2, pp. 233–239, 2011.
[9]
D. L. Smith, G. P. Horn, S. J. Petruzzello, G. Fahey, J. Woods, and B. Fernhall, “Clotting and fibrinolytic changes following firefighting activities,” Medicine & Science in Sports & Exercise, 2013.
[10]
D. Hostler, J. Suyama, F. X. Guyette et al., “A randomized controlled trial of aspirin and exertional heat stress activation of platelets in firefighters during exertion in thermal protective clothing,” Prehospital Emergency Care, 2013.
[11]
E. G. Flamholtz, Human Resource Accounting, Kluwer Academic, Norwell, Mass, USA, 1999.
[12]
C. B. Jones, “Staff nurse turnover costs: part II, Measurements and results,” Journal of Nursing Administration, vol. 20, no. 5, pp. 27–32, 1990.
[13]
C. B. Jones, “The costs of nurse turnover. Part 1: an economic perspective,” Journal of Nursing Administration, vol. 34, no. 12, pp. 562–570, 2004.
[14]
C. B. Jones, “The costs of nurse turnover, part 2: application of the nursing turnover cost calculation methodology,” Journal of Nursing Administration, vol. 35, no. 1, pp. 41–49, 2005.
[15]
C. B. Jones, “Revisiting nurse turnover costs: adjusting for inflation,” Journal of Nursing Administration, vol. 38, no. 1, pp. 11–18, 2008.
[16]
C. B. Jones, “Staff nurse turnover costs: part I, a conceptual model,” Journal of Nursing Administration, vol. 20, no. 4, pp. 18–23, 1990.
[17]
R. A. Krueger, Focus Groups: A Practical Guide for Applied Research, Sage, Newberry Park, Calif, USA, 1990.
[18]
M. R. Lynn, “Determination and quantification of content validity,” Nursing Research, vol. 35, no. 6, pp. 382–386, 1986.
[19]
P. D. Patterson, C. B. Jones, M. W. Hubble et al., “The longitudinal study of turnover and the cost of turnover in emergency medical services,” Prehospital Emergency Care, vol. 14, no. 2, pp. 209–221, 2010.
[20]
J. Suyama, J. C. Rittenberger, P. D. Patterson, and D. Hostler, “Comparison of public safety provider injury rates,” Prehospital Emergency Care, vol. 13, no. 4, pp. 451–455, 2009.
[21]
D. L. Smith, “Firefighter fitness: improving performance and preventing injuries and fatalities,” Current Sports Medicine Reports, vol. 10, no. 3, pp. 167–172, 2011.
[22]
D. B. Petitti, “Meta-analysis, decision analysis, and cost-effectiveness analysis,” in Monographs in Epidemiology and Biostatistics, J. L. Kelsey, M. G. Marmot, P. D. Stolley, and M. P. Vessey, Eds., vol. 31, p. 306, Oxford University Press, New York, NY, USA, 2000.
[23]
D. E. Gaetano, S. Ackerman, A. Clark et al., “Health surveillance for rural volunteer firefighters and emergency medical services personnel,” AAOHN Journal, vol. 55, no. 2, pp. 57–63, 2007.
[24]
M. J. Budoff, R. Karwasky, N. Ahmadi et al., “Cost-effectiveness of multidetector computed tomography compared with myocardial perfusion imaging as gatekeeper to invasive coronary angiography in asymptomatic firefighters with positive treadmill tests,” Journal of Cardiovascular Computed Tomography, vol. 3, no. 5, pp. 323–330, 2009.
[25]
H. R. Superko, K. M. Momary, L. K. Pendyala et al., “Firefighters, heart disease, and aspects of insulin resistance: the FEMA firefighter heart disease prevention study,” Journal of Occupational and Environmental Medicine, vol. 53, no. 7, pp. 758–764, 2011.
[26]
P. Pillutla, D. Li, N. Ahmadi, and M. J. Budoff, “Comparison of coronary calcium in firefighters with abnormal stress test findings and in asymptomatic nonfirefighters with abnormal stress test findings,” American Journal of Cardiology, vol. 109, no. 4, pp. 511–514, 2012.
[27]
C. S. Baxter, C. S. Ross, T. Fabian et al., “Ultrafine particle exposure during fire suppression-is it an important contributory factor for coronary heart disease in firefighters?” Journal of Occupational and Environmental Medicine, vol. 52, no. 8, pp. 791–796, 2010.
[28]
J. L. Burgess, C. J. Nanson, D. M. Bolstad-Johnson et al., “Adverse respiratory effects following overhaul in firefighters,” Journal of Occupational and Environmental Medicine, vol. 43, no. 5, pp. 467–473, 2001.