The significant advances in power electronics have permitted the implementation of sophisticated methods for control of electric motors. Each innovative electrical apparatus for industrial and automotive application must be correctly and exhaustively tested, both during the developing process and finally for the compliance test. The development of a new electrical system should be associated with a parallel design of an ad hoc measurement system, whose performance should be defined according to the features of the system under test. In recent years, the increasing interest for sensorless electric motor drives involved the development and implementation of a wide set of control techniques. This paper reviews the state and the trends of measurement techniques and instruments applied for the experimental characterization of variable speed drives. 1. Introduction The test, monitoring, and maintenance of an electrical variable speed drives (VSDs) involve the measurement of several quantities, both electrical and mechanical. In detail, the development and the application of sensorless techniques for VSD involve the setting up of measurement system during the validation phase, even by adopting mechanical transducers that will not be present in the final release of the VSD. Typical electrical quantities are the supply voltage and current and the active power. The measurement of mechanical torque and rotation speed is also required to evaluate the mechanical power produced by the motor. High accuracy measurement of resistance ( ) and inductance ( ) are needed for the correct implementation of the motors model. A wide variety of instrument and transducers are available for the measurement of these quantities. Analogue instruments were generally used in the past, even if the recent trend has been toward digital instruments, because of better performance and remote communication capabilities. Due to the fast advancement of semiconductor power switching device technology and developments in microprocessor-based control systems, actually the VSDs are widespread because of their versatility. The utilization of such control devices makes the supply electrical quantities of the electrical motors strongly deformed [1]. The characterization of a VSD, using traditional techniques and sinusoidal signals, can give incorrect or misleading results, because of the different working conditions. High performance transducers can be successfully adopted for the development of data acquisition systems based on multichannel Data Acquisition Devices (DAQ). The evaluation of the VSD
References
[1]
J. Holtz, “Sensorless control of induction machines—with or without signal injection?” IEEE Transactions on Industrial Electronics, vol. 53, no. 1, pp. 7–30, 2006.
[2]
K. Lee and G. Nojima, “Quantitative power quality and characteristic analysis of multilevel pulsewidth-modulation methods for three-level neutral-point-clamped medium-voltage industrial drives,” IEEE Transactions on Industry Applications, vol. 48, no. 4, pp. 1364–1373, 2012.
[3]
D. Gallo, M. Luiso, and N. Pasquino, “Experimental evaluation of the incidence of operating conditions on measurement uncertainty of conducted emissions by power drive systems,” in Proceedings of the IEEE Instrumentation and Measurement Technology Conference (IMTC '06), pp. 1705–1710, Sorrento, Italy, April 2006.
[4]
G. Acampora, C. Landi, M. Luiso, and N. Pasquino, “Optimization of energy consumption in a railway traction system,” in Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM '06), pp. 1121–1126, Taormina, Italy, May 2006.
[5]
C. Landi and M. Luiso, “Performances assessment of electrical motors in presence of disturbances on power supply,” in Proceedings of the International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM '08), pp. 167–172, Ischia, Italy, June 2008.
F. Avallone, C. de Capua, and C. Landi, “Measurand reconstruction techniques for power measurements on high efficiency variable speed drives,” in Proceedings of the 14th IMEKO World Congress, Tampere, Finland, June 1997.
[14]
G. Bucci, A. Germano, and C. Landi, “Real-time harmonics estimation on power system by means of a transputer-based measurement apparatus,” in Proceedings of the 13th IMEKO World Congress, pp. 1276–1281, Turin, Italy, September 1994.
[15]
G. Bucci and C. Landi, “On-line power measurement in non-sinusoidal condition by using a FRLS algorithm,” in Proceedings of the 7th Symposium on Modern Electrical and Magnetic Measurement (IMEKO-TC4 '95), pp. 676–680, Prague, Czech Republic, September 1995.
[16]
G. Bucci, F. Avallone, C. de Capua, and C. Landi, “Comparative analysis among real-time power measurement on PWM-Fed systems,” in Proceedings of the 8th Symposium on New Measurements and Calibration Methods of Electrical Quantities and Instruments (IMEKO TC-4 '96), pp. 242–245, Budapest, Hungary, September 1996.
[17]
G. Bucci, C. de Capua, and C. Landi, “Power measurements on high distorted signals: experimental comparison between two alternative developed device solutions,” Measurement, vol. 23, no. 3, pp. 151–158, 1998.
[18]
G. Bucci and C. Landi, “On-line digital measurement for the quality analysis of power systems under non-sinusoidal conditions,” in Proceedings of the Joint IEEE Instrumentation and Measurement Technology Conference & IMEKO Technical Committee (IMTC '96), pp. 934–938, Brussels, Belgium, June 1996.
[19]
G. Bucci, C. de Capua, and C. Landi, “Power measurements,” in Encyclopedia of Electrical and Electronics Engineering, pp. 716–733, John Wiley & Sons, 1999.
[20]
P. Arpaia, F. Avallone, A. Baccigalupi, C. de Capua, and C. Landi, “Power measurement,” in The Measurement, Instrumentation and Sensors Handbook, J. Webster, Ed., CRC Press, Boca Raton, Fla, USA, 1997.
[21]
F. Avallone, C. de Capua, and C. Landi, “Metrological performance improvement for power measurements on variable speed drives,” in Proceedings of the Power Electronics, Industrial Drives, Power Quality and Traction Systems (SPEEDAM '96), Capri, Italy, June 1996.
[22]
F. Avallone, C. de Capua, and C. Landi, “A digital technique based on real-time error compensation for high accuracy power measurement on variable speed drives,” in Proceedings of the IEEE Instrumentation & Measurement Technology Conference (IMTC '97), pp. 201–206, Ottawa, Canada, May 1997.
[23]
F. Avallone, C. de Capua, and C. Landi, “Measurement station performance optimization for testing on high efficiency variable speed drives,” in Proceedings of the Joint IEEE Instrumentation and Measurement Technology Conference & IMEKO Technical Committee (IMTC '96), pp. 1098–1103, Brussels, Belgium, June 1996.
G. Bucci and C. Landi, “Metrological characterization of a contactless smart thrust and speed sensor for linear induction motor testing,” IEEE Transactions on Instrumentation and Measurement, vol. 45, no. 2, pp. 493–498, 1996.
[26]
H. H. Bau, N. F. de Rooij, and B. Kloeck, “Mechanical sensor,” in Sensors: A Comprehensive Survey, vol. 7, VCH, 1994.
[27]
J. R. Cameron, W. T. Thomson, and A. B. Dow, “Vibration and current monitoring for detecting airgap eccentricity in large induction motors,” IEE Proceedings B, vol. 133, no. 3, pp. 155–163, 1986.
T. D. Batzel and K. Y. Lee, “Electric propulsion with sensorless permanent magnet synchronous motor: implementation and performance,” IEEE Transactions on Energy Conversion, vol. 20, no. 3, pp. 575–583, 2005.
[30]
M. E. Elbuluk and M. D. Kankam, Speed Sensorless Induction Motor Drives for Electrical Actuators: Schemes, Trends and Tradeoffs, NASA Technical Memorandum 107466, 1997.
[31]
M. Barut, R. Demir, E. Zerdali, and R. Inan, “Real-time implementation of bi input-extended Kalman filter-based estimator for speed-sensorless control of induction motors,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4197–4206, 2012.
[32]
S. Jafarzadeh, C. Lascu, and M. S. Fadali, “State estimation of induction motor drives using the unscented Kalman filter,” IEEE Transactions on Industrial Electronics, vol. 59, no. 11, pp. 4207–4216, 2012.
[33]
Y.-R. Kim, S.-K. Sul, and M.-H. Park, “Speed sensorless vector control of induction motor using extended Kalman filter,” IEEE Transactions on Industry Applications, vol. 30, no. 5, pp. 1225–1233, 1994.
[34]
Y.-S. Kim, S.-U. Kim, and I.-W. Yang, “Implementation of a speed sensor-less vector control of induction motor by reduced-order extended Kalman filter,” in Proceedings of the 10th IEEE Annual Applied Power Electronics Conference (APEC '95), pp. 197–203, Dallas, Tex, USA, March 1995.
[35]
B. J. Brunsbach, G. Henneberger, and T. Klesch, “Realization of a sensorless field-oriented controlled drive of an induction motor with a Kalman filter,” in Proceedings of the 19th International Conference on Intelligent Motion (PCIM '91), pp. 53–64, Nürnberg, Germany, June 1991.
[36]
F. Bonanno, A. Consoli, A. Raciti, and A. Testa, “An innovative direct self-control scheme for induction motor drives,” IEEE Transactions on Power Electronics, vol. 12, no. 5, pp. 800–806, 1997.
[37]
M. Depenbrock, “Direct self-control (DSC) of inverter-fed induction machine,” IEEE Transactions on Power Electronics, vol. 3, no. 4, pp. 420–429, 1988.
[38]
S. Ziaeinejad, Y. Sangsefidi, H. P. Nabi, and A. Shoulaie, “Direct torque control of two-phase induction and synchronous motors,” IEEE Transactions on Power Electronics, vol. 28, no. 8, pp. 4041–4050, 2013.
[39]
J. Faiz, M. B. B. Sharifian, A. Keyhani, and A. B. Proca, “Sensorless direct torque control of induction motors used in electric vehicle,” IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 1–10, 2003.
[40]
J. Faiz, M. B. B. Sharifian, A. Keyhani, and A. B. Proca, “Sensorless direct torque control of induction motors used in electric vehicle,” IEEE Transactions on Energy Conversion, vol. 18, no. 1, pp. 1–10, 2003.
[41]
K. Matsus and S. Katsuta, “Fast rotor flux control of vector controlled induction motor operating at maximum efficiency for electric vehicles,” in Proceedings of the 13th International Electric Vehicle Symposium (IEVS '96), pp. 272–278, 1996.
[42]
J. Faiz, S. H. Hossieni, M. Ghaneei, A. Keyhani, and A. Proca, “Direct torque control of induction motors for electric propulsion systems,” Electric Power Systems Research, vol. 51, no. 2, pp. 95–101, 1999.
[43]
U. Baader, M. Depenbrock, and G. Gierse, “Direct self control (DSC) of inverter-fed induction machine: a basis for speed control without speed measurement,” IEEE Transactions on Industry Applications, vol. 28, no. 3, pp. 581–588, 1992.
[44]
O. Kukrer, “Discrete-time current control of voltage-fed three-phase PWM inverters,” IEEE Transactions on Power Electronics, vol. 11, no. 2, pp. 260–269, 1996.
[45]
T. G. Habetler, F. Profumo, M. Pastorelli, and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Transactions on Industry Applications, vol. 28, no. 5, pp. 1045–1053, 1992.
[46]
P. Vas, Sensorless Vector and Direct Torque Control, Oxford University Press, New York, NY, USA, 1998.
[47]
J. Faiz and M. B. B. Sharifian, “Different techniques for real time estimation of an induction motor rotor resistance in sensorless direct torque control for electric vehicle,” IEEE Transactions on Energy Conversion, vol. 16, no. 1, pp. 104–110, 2001.
[48]
A. Taheri, A. Rahmati, and S. Kaboli, “Efficiency improvement in DTC of six-phase induction machine by adaptive gradient descent of flux,” IEEE Transactions on Power Electronics, vol. 27, no. 3, pp. 1552–1562, 2012.
[49]
G. Bucci, E. Fiorucci, F. Ciancetta, and N. Rotondale, “A testing system for the performance evaluation of electrical machines under realistic voltage fluctuations,” in Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC '10), pp. 1441–1446, Austin, Tex, USA, May 2010.
[50]
“IEEE Draft Guide for the Application of Power Electronics for Power Quality Improvement on Distribution Systems Rated 1 kV through 38 kV,” 1409/D15, pp. 1–92, 2012.
[51]
“IEEE Guide for Identifying and Improving Voltage Quality in Power Systems,” IEEE Std 1250-2011, pp. 1–70, 2011.
[52]
“IEEE Recommended Practice for Monitoring ElectricPower Quality,” IEEE Std 1159-2009 (Revision of IEEE Std 1159-1995), pp. c1–81, 2009.
G. Bucci, E. Fiorucci, A. Ometto, and N. Rotondale, “The evaluation of the effects of the voltage amplitude modulations on induction motors,” in Proceedings of the IEEE Russia Power Tech (Powertech '05), St. Petersburg, Russia, June 2005.
C. Landi, M. Luiso, and N. Pasquino, “A remotely controlled onboard measurement system for optimization of energy consumption of electrical trains,” IEEE Transactions on Instrumentation and Measurement, vol. 57, no. 10, pp. 2250–2256, 2008.
[63]
G. del Prete, D. Gallo, C. Landi, and M. Luiso, “The use of real-time instruments for smart power systems,” in Proceedings of the IEEE International Energy Conference and Exhibition (ENERGYCON '12), pp. 884–889, Florence, Italy, September 2012.
[64]
G. Bucci, E. Fiorucci, F. Ciancetta, D. Gallo, C. Landi, and M. Luiso, “Embedded power and energy measurement system based on an analog multiplier,” IEEE Transactions on Instrumentation and Measurement, vol. 62, no. 8, pp. 2248–2257, 2013.
[65]
D. Gallo, C. Landi, M. Luiso, G. Bucci, and E. Fiorucci, “Low cost smart power metering,” in Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC '13), Minneapolis, Minn, USA, May 2013.
[66]
G. Bucci, F. Ciancetta, E. Fiorucci, D. Gallo, and C. Landi, “A low cost embedded web services for measurements on power system,” in Proceedings of the IEEE International Conference on Virtual Environments, Human-Computer Interfaces, and Measurement Systems (VECIMS '05), pp. 7–12, Giardini Naxos, Itay, June 2005.