全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Selection of Design Parameters to Reduce the Zero-Sequence Circulating Current Flow in Parallel Operation of DC Linked Multiple Shunt APF Units

DOI: 10.1155/2013/381581

Full-Text   Cite this paper   Add to My Lib

Abstract:

Capacity enhancement and operational flexibility are two of the important limitations of the centralized shunt APF ( ) unit. These limitations can be conquered by the operation of multiple APF units in parallel and connected back to back by a common DC link capacitor. In that case, a circulating current (CC) flows within the units. This CC flow becomes out of control when the units operate in hysteresis based current controlled mode. One of the difficulties of this CC flow control or reduction is the variable switching frequency of the units. In this paper, the model for CC flow is derived by the switching dynamics study of the units. It is found that the selection of design parameters plays an important role in the amount of CC flow. Detailed simulation, analysis, and real-time performance show how the selection of design parameters affects the CC flow and the reduction of CC flow can also be achieved at an acceptable level by the proper selection of design parameters. 1. Introduction The power quality, at all time, is a matter of concern where a number of nonlinear, harmonics producing, and sophisticated loads are connected in an electrical distribution network. In that case, for power quality (PQ) improvement, shunt active power filters ( ) are finding greater applications as interfacing and compensating devices in the distributed network. The power rating and switching frequency of the converters are determined by the magnitude of harmonic currents and required filter bandwidth. In high power applications, the filtering task cannot be performed for the whole spectrum of harmonics by using a single converter due to the limitations on switching frequency and power rating of the semiconductor devices. Therefore, compensating the reactive harmonic components to improve the power quality of the distributed network as well as to avoid the large capacity centralised , parallel operation of multiple low power units is increasing. Different controlling mechanisms and topologies are available in handling the difficulties of parallel operation of either in active load sharing or distributed mode. Although the harmonic current compensation is the primary function of parallel APF, it can also be used as a compensator for voltage harmonics. A detailed technical review on parallel operation of for current and voltage harmonic compensation in a distributed generation (DG) network has been done in [1, 2] where the pros and cons of the different control methods have been discussed. For these cases, there is no physical/electrical link between the units. Another kind

References

[1]  S. K. Khadem, M. Basu, and M. F. Conlon, “A review of parallel operation of active power filters in the distributed generation system,” in Proceedings of the 14th European Conference on Power Electronics and Applications (EPE '11), pp. 1–10, September 2011.
[2]  S. K. Khadem, M. Basu, and M. F. Conlon, “Parallel operation of inverters and active power filters in distributed generation system—a review,” Renewable and Sustainable Energy Reviews, vol. 15, no. 9, pp. 5155–5168, 2011.
[3]  H. Akagi and K. Nabae, “Control strategy of active power filters using multiple voltage source PWM converters,” IEEE Transactions on Industry Applications, vol. 1, no. 3, pp. 460–466, 1985.
[4]  L. Asiminoaei, E. Aeloiza, J. H. Kim et al., “Parallel interleaved inverters for reactive power and harmonic compensation,” in Proceedings of the 37th IEEE Power Electronics Specialists Conference (PESC '06), pp. 1–7, June 2006.
[5]  L. Asiminoaei, C. Lascu, F. Blaabjerg, and I. Boldea, “Performance improvement of shunt active power filter with dual parallel topology,” IEEE Transactions on Power Electronics, vol. 22, no. 1, pp. 247–259, 2007.
[6]  Z. Ye, D. Boroyevich, J.-Y. Choi, and F. C. Lee, “Control of circulating current in parallel three-phase boost rectifiers,” in Proceedings of the 15th Annual IEEE Applied Power Electronics Conference and Exposition (APEC '00), pp. 506–512, February 2000.
[7]  T.-P. Chen, “Circulating zero-sequence current control of parallel three-phase inverters,” IEE Proceedings: Electric Power Applications, vol. 153, no. 2, pp. 282–288, 2006.
[8]  M. Pattnaik and D. Kastha, “Harmonic compensation with zero-sequence load voltage control in a speed-sensorless DFIG-based stand-alone VSCF generating system,” IEEE Transactions on Industrial Electronics, vol. 60, no. 12, pp. 5506–5514, 2013.
[9]  C.-T. Pan and Y.-H. Liao, “Modeling and coordinate control of circulating currents in parallel three-phase boost rectifiers,” IEEE Transactions on Industrial Electronics, vol. 54, no. 2, pp. 825–838, 2007.
[10]  T.-P. Chen, “Zero-sequence circulating current reduction method for parallel HEPWM inverters between AC bus and DC bus,” IEEE Transactions on Industrial Electronics, vol. 59, no. 1, pp. 290–300, 2012.
[11]  L. Asiminoaei, E. Aeloiza, P. N. Enjeti, and F. Blaabjerg, “Shunt active-power-filter topology based on parallel interleaved inverters,” IEEE Transactions on Industrial Electronics, vol. 55, no. 3, pp. 1175–1189, 2008.
[12]  S. K. Khadem, Power quality improvement of distributed generation integrated network with unified power quality conditioner [Ph.D. thesis], The Dublin Institute of Technology, Dublin, Ireland, 2013.
[13]  S. K. Khadem, M. Basu, and M. F. Conlon, “Harmonic power compensation capacity of shunt APF and its relationship to design parameters,” IET Power Electronics. In press.
[14]  M. K. Mishra and K. Karthikeyan, “An investigation on design and switching dynamics of a voltage source inverter to compensate unbalanced and nonlinear loads,” IEEE Transactions on Industrial Electronics, vol. 56, no. 8, pp. 2802–2810, 2009.
[15]  P. Venne, J. N. Paquin, and J. Bélanger, “The what, where and why of real-time simulation,” in Proceedings of the IEEE Power & Energy Society General Meeting (PES '10), pp. 37–49, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133