全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Using Averaged Modeling for Capacitors Voltages Observer in NPC Inverter

DOI: 10.1155/2012/176876

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper developed an adaptive observer to estimate capacitors voltages of a three-level neutral-point-clamped (NPC) inverter. A robust estimated method using one parameter is proposed, which eliminates the voltages sensors. An averaged modeling of the inverter was used to develop the observer. This kind of modeling allows a good trade-off between simulation cost and precision. Circuit model of the inverter (implemented in Simpower Matlab simulator) associated to the observer algorithm was used to validate the proposed algorithm. 1. Introduction Multilevel inverters can provide an effective alternative of high power applications, providing a high quality voltage, increasing efficiency and robustness, and reducing interference electromagnetics [1–4]. There are three main topologies of multilevel inverters: diode-clamped inverter [2, 5, 6], flying capacitor inverter [7, 8], and cascade multilevel inverter [6, 9]. Among the multilevel inverters, the most popular topology is the diode-clamped inverter which is called as a neutral-point-clamped (NPC) inverter in three levels. It is proposed by Nabae et al. [10]. This type of inverter avoids the complexity associated with the series connection of semiconductor switches or the bulky coupling transformer, produces low distortion harmonics, and has an average cost. However, in NPC inverter, the DC-link voltage is divided by capacitors, and each capacitor is composed of series connection construction. Therefore, if the voltage unbalancing occurs between each capacitor, the line-to-line output voltage waveform has many harmonic components and the power devices in NPC inverter cannot guarantee the safe operation. So, one NPC inverter requirement is to produce a good control maintaining the optimal balance of capacitor voltages [11–13]. Thus, regulation of these capacitors voltages requires information about such voltages. For that there are two possibilities either measuring or estimating such voltages. Regarding the first possibility, it presents several disadvantages: besides the known difficulties when measuring a high-voltage level, if the number of levels increases the number of capacitors increases in NPC inverter. Then it will be necessary to use multiple-voltage sensors to measure the capacitor voltages, which reduces the reliability. Furthermore, the use of the voltages sensors presents many difficulties of establishment in front of the use of the current sensors. On the other hand, the second alternative uses software sensors, called observers, which replace the physical sensors (the voltage sensors).

References

[1]  G. Baoming and F. Z. Peng, “Speed sensorless vector control induction motor drives fed by cascaded neutral point clamped inverter,” in Proceedings of the 24th Annual IEEE Applied Power Electronics Conference and Exposition (APEC '09), pp. 1991–1997, February 2009.
[2]  B. Hu, G. Xu, M. Zhang, J. Kang, and L. Xia, “Study on a novel clamped topology of multilevel converters,” in Proceedings of the IEEE International Electric Machines and Drives Conference (IEMDC '09), pp. 379–384, May 2009.
[3]  T. A. Lipo, M. D. Manjrekar, and P. Steimer, “Hybrid multilevel power conversion system: a competitive solution for high power applications,” in Proceedings of the 34th IEEE-IAS Annual Meeting, pp. 1520–1527, October 1999.
[4]  O. Vodyakho and C. C. Mi, “Three-level inverter-based shunt active power filter in three-phase three-wire and four-wire systems,” IEEE Transactions on Power Electronics, vol. 24, no. 5, pp. 1350–1363, 20089.
[5]  F. J. C. Padilha, W. I. Suemitsu, M. D. Bellar, and P. M. Lourenco, “Low-cost gate drive circuit for three-level neutral-point-clamped voltage-source inverter,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1196–1204, 2009.
[6]  T. Wanjekeche, D. V. Nicolae, and A. A. Jimoh, “A cascaded NPC/H-bridge inverter with simplified control strategy and minimum component count,” in Proceedings of the IEEE Africon, vol. 4, pp. 769–777, September 2009.
[7]  R. P. Aguilera and D. E. Quevedo, “Capacitor voltage estimation for predictive control algorithm of flying capacitor converters,” in Proceedings of the IEEE International Conference on Industrial Technology (ICIT '09), pp. 1–6, February 2009.
[8]  T. A. Meynard, H. Foch, P. Thomas, J. Courault, R. Jakob, and M. Nahrstaedt, “Multicell converters: basic concepts and industry applications,” IEEE Transactions on Industrial Electronics, vol. 49, no. 5, pp. 955–964, 2002.
[9]  E. Babaei, “A cascade multilevel converter topology with reduced number of switches,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2657–2664, 2008.
[10]  A. Nabae, I. Takahashi, and H. Akagi, “A neutral-point clamped PWM inverter,” in Proceedings of the IEEE-IAS, pp. 761–766, October 1981.
[11]  H. Zhang, S. J. Finney, A. Massoud, and B. W. Williams, “An SVM algorithm to balance the capacitor voltages of the three-level NPC active power filter,” IEEE Transactions on Power Electronics, vol. 23, no. 6, pp. 2694–2702, 2008.
[12]  J. A. Ulrich and A. R. Bendre, “Floating capacitor voltage regulation in diode clamped hybrid multilevel converters,” in Proceedings of the IEEE Electric Ship Technologies Symposium (ESTS '09), pp. 197–202, April 2009.
[13]  Y. S. Lai, Y. K. Chou, and S. Y. Pai, “Simple PWM technique of capacitor voltage balance for three-level inverter with DC-link voltage sensor only,” in Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON '07), pp. 1749–1754, November 2007.
[14]  A. Birouche, Contribution sur la synthèse d'observateurs pour les systèmes dynamiques hybrides [Thèse de doctorat], Institut National de Polytechnique de Lorraine, Loraine, France, 2006.
[15]  S. Bonnabel and P. Rouchon, “Control and observer design for nonlinear finite and infinite dimensional systems,” in Lecture Notes in Control and Information Sciences, vol. 322, pp. 53–65, Springer, 2005.
[16]  M. Morari, A. Bemporad, and G. Ferrari-Trecate, “Observability and controllability of piecewise affine and hybrid systems,” IEEE Transactions on Automatic Control, vol. 45, no. 10, pp. 1864–1876, 2000.
[17]  H. Nademi, A. Das, and L. Norum, “Nonlinear observer-based capacitor voltage estimation for sliding mode current controller in NPC multilevel converters,” in Proceedings of the IEEE Trondheim PowerTech, pp. 1–7, 2011.
[18]  A. Gopinath, A. A. S. Mohamed, and M. R. Baiju, “Fractal based space vector PWM for multilevel inverters—a novel approach,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1230–1237, 2009.
[19]  M. A. Trabelsi, “Modélisation et Commande des Systèmes Physiques à Topologie Variable: Application au Convertisseur Multicellulaire,” L'Institut National des Sciences Appliquées de Lyon, 2009.
[20]  J. Chen, R. Erickson, and D. Maksimovi?, “Averaged switch modeling of boundary conduction mode dc-to-dc converters,” in Proceedings of the 27th Annual Conference of the IEEE Industrial Electronics Society (IECON '2001), pp. 844–849, December 2001.
[21]  B. Urmila and D. Subba Rayudu, “Optimum space vector PWM algorithm for three-level inverter,” ARPN Journal of Engineering and Applied Sciences, vol. 6, no. 9, pp. 24–36, 2011.
[22]  K. Ammous, E. Haouas, and S. Abid, “Averaged modelling of multilevel converters,” The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 29, no. 3, pp. 626–646, 2010.
[23]  V. Andrieu, L. Praly, and A. Astolfi, “High gain observers with updated gain and homogeneous correction terms,” Automatica, vol. 45, no. 2, pp. 422–428, 2009.
[24]  H. Khalil, Nonlinear Systems, Prentice-Hall, 2nd edition, 1996.
[25]  J. De León Morales, M. F. Escalante, and M. T. Mata-Jiménez, “Observer for DC voltages in a cascaded H-bridge multilevel STATCOM,” IET Electric Power Applications, vol. 1, no. 6, pp. 879–889, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133