FTIR spectroscopy was used to investigate the alterations of the vibration bands in the mid-infrared region of Polyethylene oxide in aqueous solution at 25?mg/mL concentration under exposure up to 4?h to a static magnetic field at 200?mT. FTIR spectroscopic analysis of PEO solution in the range 3500–1000?cm?1 evidenced the stretching vibrations of ether band, C–H symmetric-antisymmetric and bending vibrations of methylene groups, and the C–O–C stretching band. A significant decrease in intensity of symmetric and asymmetric stretching CH2 vibration bands occurred after 2?h and 4?h of exposure, followed by a significant decrease in intensity of scissoring bending in plane CH2 vibration around 1465?cm?1. Finally, the C–O–C stretching band around 1080?cm?1 increased in intensity after 4?h of exposure. This result can be attributed to the increase of formation of the intermolecular hydrogen bonding that occurred in PEO aqueous solution after SMF exposure, due to the reorientation of PEO chain after exposure to SMF. In this scenario, the observed decrease in intensity of CH2 vibration bands can be understood as well considering that the reorientation of PEO chain under the applied SMF induces PEO demicellization. 1. Introduction Polymers are substances whose molecules have high molar masses, formed by repeated linking of small molecules called “monomers”. Some natural polymers are proteins, starches, cellulose, and latex. Synthetic polymers are produced commercially on a large scale and have a wide range of properties and uses, such as plastics. Water-soluble polymers may be used in industrial and consumer products such as polymeric surfactant, pigment dispersants, or detergents, due to their properties of assembly in spherical micelles and vesicles that may be used as drug delivery vehicles. Indeed, several polymers can aggregate in micelles and can be considered good candidates for drug delivery purposes [1–4]. An important property of polymers is crystallization. The long chains of repeating monomers of a polymer form stacks of parallel chains called lamellae, that fold back on itself, as explained by [5, 6]. If crystallization is increased, the polymers tend to be stronger and more rigid, however this can lead to brittleness [7, 8]. Polymers structure have been accurately studied using neutron scattering techniques [9, 10]. In particular, the structure of polyethylene oxide (PEO) micelles is well described by the core-corona model [11–13]. PEO crystallinity was found by [14]. PEO is one of the simplest polymers, composed of chains of repeating –CH2–
References
[1]
F. Meng, Z. Zhong, and J. Feijen, “Stimuli-responsive polymersomes for programmed drug delivery,” Biomacromolecules, vol. 10, no. 2, pp. 197–209, 2009.
[2]
R. P. Brinkhuis, F. P. J. T. Rutjes, and J. C. M. Van Hest, “Polymeric vesicles in biomedical applications,” Polymer Chemistry, vol. 2, no. 7, pp. 1449–1462, 2011.
[3]
S. B. La, T. Okano, and K. Kataoka, “Preparation and characterization of the micelle-forming polymeric drug: indomethacin-incorporated poly(ethylene oxide)-poly(b-benzyl L-aspartate) block copolymer micelles,” Journal of Pharmaceutical Sciences, vol. 85, p. 85, 1996.
[4]
T. Riley, T. Govender, S. Stolnik et al., “Colloidal stability and drug incorporation aspects of micellar-like PLA-PEG nanoparticles,” Colloids and Surfaces B, vol. 16, no. 1-4, pp. 147–159, 1999.
[5]
A. Keller, “A note on single crystals in polymers—evidence for a folded chain configuration,” Philosophical Magazine, vol. 2, no. 21, pp. 1171–1175, 1957.
[6]
P. H. Till, “The growth of single crystals of linear polyethylene,” Journal of Polymer Science, vol. 24, pp. 301–306, 1957.
[7]
K. G. McLaren, “Dynamic mechanical studies of irradiation effects in polytetrafluoroethylene,” British Journal of Applied Physics, vol. 16, no. 2, article no. 311, pp. 185–193, 1965.
[8]
H. S. Kaufman and J. J. Falcetta, Introduction to Polymer Science and Technology: An SPE Textbook, Wiley & Sons, 1977.
[9]
S. Magazù, “NMR, static and dynamic light and neutron scattering investigations on polymeric aqueous solutions,” Journal of Molecular Structure, vol. 523, no. 1-3, pp. 47–59, 2000.
[10]
S. Magazù, G. Maisano, F. Migliardo, and A. Benedetto, “Elastic incoherent neutron scattering on systems of biophysical interest: mean square displacement evaluation from self-distribution function,” Journal of Physical Chemistry B, vol. 112, no. 30, pp. 8936–8942, 2008.
[11]
P. Alexandridis, J. F. Holzwarth, and T. A. Hatton, “Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association,” Macromolecules, vol. 27, no. 9, pp. 2414–2425, 1994.
[12]
M. Bohorquez, C. Koch, T. Trygstad, and N. Pandit, “A study of the temperature-dependent micellization of pluronic F127,” Journal of Colloid and Interface Science, vol. 216, no. 1, pp. 34–40, 1999.
[13]
G. Wanka, H. Hoffmann, and W. Ulbricht, “Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions,” Macromolecules, vol. 27, no. 15, pp. 4145–4159, 1994.
[14]
J. Q. G. Maclaine and C. Booth, “Effect of molecular weight on crystallization isotherms of high molecular weight poly(ethylene oxide) fractions,” Polymer, vol. 16, no. 9, pp. 680–684, 1975.
[15]
J. H. Lee, H. B. Lee, and J. D. Andrade, “Blood compatibility of polyethylene oxide surfaces,” Progress in Polymer Science, vol. 20, no. 6, pp. 1043–1079, 1995.
[16]
C. Allen, D. Maysinger, and A. Eisenberg, “Nano-engineering block copolymer aggregates for drug delivery,” Colloids and Surfaces B, vol. 16, no. 1-4, pp. 3–27, 1999.
[17]
B. M. Discher, Y.-Y. Won, D. S. Ege et al., “Polymersomes: tough vesicles made from diblock copolymers,” Science, vol. 284, no. 5417, pp. 1143–1146, 1999.
[18]
V. P. Torchilin, “Polymeric micelles for therapeutic applications in medicine,” Nanoscience and Nanotechnology, vol. 9, pp. 261–299, 2010.
[19]
A. S. Mikhail and C. Allen, “Block copolymer micelles for delivery of cancer therapy: transport at the whole body, tissue and cellular levels,” Journal of Controlled Release, vol. 138, no. 3, pp. 214–223, 2009.
[20]
T. Blythe and D. Bloor, Electrical Properties of Polymers, Cambridge University Press, 2005.
[21]
P. Chadwick and F. Lowes, “Magnetic fields on British trains,” Annals of Occupational Hygiene, vol. 42, no. 5, pp. 331–335, 1998.
[22]
World Health Organization (WHO), Static Fields. Environmental Health Criteria, WHO, Geneva, Switzerland, 2006.
[23]
E. Calabrò, Effects of Electromagnetic Fields on Cells and Proteins' Structure, Lambert Academic Publishing, Saarbrücken, Germany, 2012.
[24]
S. Magazù and E. Calabrò, “Studying the electromagnetic-induced changes of the secondary structure of bovine serum albumin and the bioprotective effectiveness of trehalose by Fourier transform infrared spectroscopy,” Journal of Physical Chemistry B, vol. 115, no. 21, pp. 6818–6826, 2011.
[25]
S. Magazù, E. Calabrò, S. Campo, and S. Interdonato, “New insights into bioprotective effectiveness of disaccharides: an FTIR study of human haemoglobin aqueous solutions exposed to static magnetic fields,” Journal of Biological Physics, vol. 38, no. 1, pp. 61–74, 2012.
[26]
E. Calabrò, S. Condello, S. Magazù, and S. Ientile, “Static and 50 Hz electromagnetic fields effects on human neuronal-like cells vibration bands in the mid-infrared region.,” Journal of Electromagnetic Analysis & Applications, vol. 3, no. 2, pp. 69–78, 2011.
[27]
S. Pacini, M. Gulisano, B. Peruzzi et al., “Effects of 0.2 T static magnetic field on human skin fibroblasts,” Cancer Detection and Prevention, vol. 27, no. 5, pp. 327–332, 2003.
[28]
W. Mauer, “In insulators for fusion applications,” IAEA-TECDOC-417, International Atomic Energy Agency, Karlsruhe, Germany, 1986.
[29]
P. A. Alexandrov, V. V. Budaragin, M. N. Shachov, N. I. Nikanorova, and E. S. Trofimchuk, “Mechanic properties of some materials in magnetic field, problems of atomic science and technology,” Thermonuclear Synthesis, vol. 1, pp. 24–30, 2006.
[30]
Y. P. Rodin, “Static magnetic fields and physical-mechanical properties of polymers. A review,” Mechanics of Composite Materials, vol. 27, no. 3, pp. 331–341, 1991.
[31]
I. Reinholds, V. Kalkis, and R. D. Maksimovs, “The effect of ionizing radiation and magnetic field on deformation properties of high density polyethylene/acrylonitrile-butadiene composites,” Journal of Chemistry and Chemical Engineering, vol. 6, pp. 242–249, 2012.
[32]
N. N. Peschanskaya and P. N. Yakushev, “Polymer creep in a static magnetic field,” Physics of the Solid State, vol. 39, no. 9, pp. 1509–1511, 1997.
[33]
R. I. Reinholds I., V. Kalkis, R. D. Maksimov, J. Zicans, and R. M. Meri, “The effect of radiation modification and of a uniform magnetic field on the deformation properties of polymer composite blends,” Mechanics of Composite Materials, vol. 47, no. 5, pp. 497–504, 2011.
[34]
S. Saeki, N. Kuwahara, M. Nakata, and M. Kaneko, “Upper and lower critical solution temperatures in poly (ethylene glycol) solutions,” Polymer, vol. 17, no. 8, pp. 685–689, 1976.
[35]
Y. C. Bae, S. M. Lambert, D. S. Soane, and J. M. Prausnitz, “Cloud-point curves of polymer solutions from thermooptical measurements,” Macromolecules, vol. 24, no. 15, pp. 4403–4407, 1991.
[36]
S. Lüsse and K. Arnold, “The interaction of poly(ethylene glycol) with water studied by 1H and 2H NMR relaxation time measurements,” Macromolecules, vol. 29, no. 12, pp. 4251–4257, 1996.
[37]
S. Bekiranov, R. Bruinsma, and P. Pincus, “Solution behavior of polyethylene oxide in water as a function of temperature and pressure,” Physical Review E, vol. 55, no. 1, pp. 577–585, 1997.
[38]
G. D. Smith, D. Bedrov, and O. Borodin, “Molecular dynamics simulation study of hydrogen bonding in aqueous poly(ethylene oxide) solutions,” Physical Review Letters, vol. 85, no. 26, pp. 5583–5586, 2000.
[39]
T. Inoue, M. Matsuda, Y. Nibu, Y. Misono, and M. Suzuki, “Phase behavior of heptaethylene glycol dodecyl ether and its aqueous mixture revealed by DSC and FT-IR spectroscopy,” Langmuir, vol. 17, no. 6, pp. 1833–1840, 2001.
[40]
T. Inoue, H. Kawamura, M. Matsuda, Y. Misono, and M. Suzuki, “FT-IR and ESR spin-label studies of mesomorphic phases formed in aqueous mixtures of heptaethylene glycol dodecyl ether,” Langmuir, vol. 17, no. 22, pp. 6915–6922, 2001.
[41]
Y. Peng, P. Wu, and Y. Yang, “Two-dimensional infrared correlation spectroscopy as a probe of sequential events in the diffusion process of water in poly(ε-caprolactone),” Journal of Chemical Physics, vol. 119, no. 15, pp. 8075–8079, 2003.
[42]
J. Umemura, D. G. Cameron, and H. H. Mantsch, “An FT-IR study of micelle formation in aqueous sodium n-hexanoate solutions,” Journal of Physical Chemistry, vol. 84, no. 18, pp. 2272–2277, 1980.
[43]
Y. Maeda, T. Nakamura, and I. Ikeda, “Changes in the hydration states of poly(N-alkylacrylamide)s during their phase transitions in water observed by FTIR spectroscopy,” Macromolecules, vol. 34, no. 5, pp. 1391–1399, 2001.
[44]
International Commission on Non-Ionizing Radiation Protection (ICNIRP), “Guidelines on limits of exposure to static magnetic fields,” Health Physics, vol. 96, pp. 504–514, 2009.
[45]
S. Condello, E. Calabrò, D. Caccamo et al., “Protective effects of agmatine in rotenone-induced damage of human SH-SY5Y neuroblastoma cells: Fourier transform infrared spectroscopy analysis in a model of Parkinson's disease,” Amino Acids, vol. 42, no. 2-3, pp. 775–781, 2012.
[46]
E. Calabrò and S. Magazù, “Inspections of mobile phone microwaves effects on proteins secondary structure by means of Fourier transform infrared spectroscopy,” Journal of Electromagnetic Analysis & Applications, vol. 2, no. 11, pp. 607–617, 2010.
[47]
F. S. Parker, Applications of Infrared Spectroscopy in Biochemistry, Biology, and Medicine, Plenum Press, New York, NY, USA, 1971.
[48]
B. Rigas, S. Morgello, I. S. Goldman, and P. T. T. Wong, “Human colorectal cancers display abnormal Fourier-transform infrared spectra,” Proceedings of the National Academy of Sciences of the United States of America, vol. 87, no. 20, pp. 8140–8144, 1990.
[49]
B. Stuart, Biological Applications of Infrared Spectroscopy, Analytical Chemistry by Open Learning, John Wiley & Sons, Chichester, UK, 1997.
[50]
J. Bertie and D. Othen, “On the assignment of the infrared spectrum of ethylene oxide,” Canadian Journal of Chemistry, vol. 51, pp. 1155–1158, 1973.
[51]
D. V. Radziuk and H. M?hwald, “Spectroscopic investigation of composite polymeric and monocrystalline systems with ionic conductivity,” Polymers, vol. 3, no. 2, pp. 674–692, 2011.
[52]
M. A. K. L. Dissanayake and R. Frech, “Infrared spectroscopic study of the phases and phase transitions in poly(ethylene oxide) and poly(ethylene oxide)—lithium trifluoromethanesulfonate complexes,” Macromolecules, vol. 28, no. 15, pp. 5312–5319, 1995.
[53]
S. L. Hager and T. B. Macrury, “Investigation of phase behavior and water binding in poly(alkylene oxide) solutions,” Journal of Applied Polymer Science, vol. 25, no. 8, pp. 1559–1571, 1980.
[54]
M. J. Hey and S. M. Ilett, “Poly(ethylene oxide) hydration studied by differential scanning calorimetry,” Journal of the Chemical Society, Faraday Transactions, vol. 87, no. 22, pp. 3671–3675, 1991.
[55]
I. Noda, “Two-dimensional infrared (2D IR) spectroscopy: theory and applications,” Applied Spectroscopy, vol. 44, pp. 550–561, 1990.
[56]
I. Noda, “Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy,” Applied Spectroscopy, vol. 47, pp. 1329–1336, 1993.
[57]
Y.-L. Su, H.-Z. Liu, J. Wang, and J.-Y. Chen, “Study of salt effects on the micellization of PEO-PPO-PEO block copolymer in aqueous solution by FTIR spectroscopy,” Langmuir, vol. 18, no. 3, pp. 865–871, 2002.
[58]
Y.-L. Su, J. Wang, and H.-Z. Liu, “FTIR spectroscopic investigation of effects of temperature and concentration on PEO-PPO-PEO block copolymer properties in aqueous solutions,” Macromolecules, vol. 35, no. 16, pp. 6426–6431, 2002.
[59]
C. Guo, H. Z. Liu, and J. Y. Chen, “A Fourier transform infrared study of the phase transition in aqueous solutions of ethylene oxide-propylene oxide triblock copolymer,” Colloid and Polymer Science, vol. 277, no. 4, pp. 376–381, 1999.
[60]
A. Anwer and A. H. Windle, “Magnetic orientation and microstructure of main-chain thermotropic copolyesters,” Polymer, vol. 34, no. 16, pp. 3347–3357, 1993.
[61]
P. C. M. Christianen, I. O. Shklyarevskiy, M. I. Boamfa, and J. C. Maan, “Alignment of molecular materials in high magnetic fields,” Physica B, vol. 346-347, no. 1-4, pp. 255–261, 2004.
[62]
M. S. Al-Haik and M. Y. Hussaini, “Molecular dynamics simulation of reorientation of polyethylene chains under a high magnetic field,” Molecular Simulation, vol. 32, no. 8, pp. 601–608, 2006.
[63]
P. Mukerjee, “The nature of the association equilibria and hydrophobic bonding in aqueous solutions of association colloids,” Advances in Colloid and Interface Science, vol. 1, pp. 241–275, 1967.
[64]
L. Jia, C. Guo, L. Yang et al., “Mechanism of PEO-PPO-PEO micellization in aqueous solutions studied by two-dimensional correlation FTIR spectroscopy,” Journal of Colloid and Interface Science, vol. 345, no. 2, pp. 332–337, 2010.