Efficacy of photoinitiators such as riboflavin (RF), camphorquinone (CQ), and safranin T (ST) and triethanolamine as a coinitiator has been compared in carrying out the polymerization of 2-hydroxyethyl methacrylate (HEMA) in aqueous and organic solvents. HEMA solutions were polymerized in the presence of RF, CQ, and ST using a low intensity visible radiation source. HEMA was assayed by a UV spectrophotometric method during the initial stages of the reactions (i.e., ~5% change). A comparison of the efficacy of photoinitiators in causing HEMA polymerization showed that RF is more efficient than CQ and ST. The rate of polymerization is directly related to solvent dielectric constant and inversely related to the solvent viscosity. RF is the most efficient photoinitiator in the polymerization of HEMA and the highest rate of reaction occurs in aqueous solutions. A general scheme for the polymerization of HEMA in the presence of photoinitiators is presented. 1. Introduction The influence of solvent on the rates and mechanisms of chemical reactions is of great importance and has been discussed by many workers [1–5]. 2-Hydroxyethyl methacrylate (HEMA) is a component of resin-modified glass-ionomer cements used as restorative materials in dentistry. It undergoes polymerization in the presence of a photoinitiator during the setting process on bonding to the teeth [6]. The efficacy of photoinitiators in the polymerization of HEMA may be affected by medium characteristics including the polarity, viscosity, and the extent of radical formation involved in the reaction. Several studies have been carried out on the effect of solvent on the polymerization of HEMA using dilatometry [7, 8], gas chromatography [9], Raman spectroscopy [10], ATR-FTIR spectroscopy [11], and differential scanning calorimetry (DSC) [12]. The primary photochemical processes in polymerization may be dependent on the solvent and, therefore, the dielectric constant of the medium could affect the initial quantum yield of the process [8]. Most of the work on the polymerization of HEMA in aqueous solution has been carried out using water-soluble photoinitiators and information is lacking on their behavior in organic solvents. It would be worthwhile to evaluate the efficiency of these photoinitiators in the polymerization of HEMA in organic solvents. The present work is based on a study of the effect of solvent dielectric constant and viscosity on the rate of polymerization of HEMA in aqueous and organic solvents using a UV spectrophotometric method. Riboflavin ( ?nm) [13], camphorquinone ( ?nm) [14],
References
[1]
E. S. Amis and J. F. Hinton, Solvent Effects on Chemical Phenomena, Academic Press, New York, NY, USA, 1973.
[2]
C. Reichardt, Solvents and Solvent Effect in Organic Chemistry, Wiley-VCH, New York, NY, USA, 2nd edition, 1988.
[3]
E. Buncel, R. A. Stairs, and H. Wilson, The Role of the Solvent in Chemical Reactions, Oxford University Press, New York, NY, USA, 2003.
[4]
P. J. Sinko, Martin's Physical Pharmacy and Pharmaceutical Sciences, Lippincott Williams & Wilkins, Philadelphia, Pa, USA, 5th edition, 2006.
[5]
N. J. Turro, V. Ramamurthy, and J. S. Scaiano, Modern Molecular Photochemistry of Organic Molecules, University Science Books, Sausalito, Calif, USA, 1st edition, 2010.
[6]
J. W. Nicholson, The Chemistry of Medical and Dental Materials, The Royal Society, Cambridge, UK, 2002.
[7]
M. V. Encinas, A. M. Rufs, M. G. Neumann, and C. M. Previtali, “Photoinitiated vinyl polymerization by safranine T/triethanolamine in aqueous solution,” Polymer, vol. 37, no. 8, pp. 1395–1398, 1996.
[8]
A. Valdebenito and M. V. Encinas, “Photopolymerization of 2-hydroxyethyl methacrylate: effect of the medium properties on the polymerization rate,” Journal of Polymer Science A, vol. 41, no. 15, pp. 2368–2373, 2003.
[9]
K. L. Beers, S. Boo, S. G. Gaynor, and K. Matyjaszewski, “Atom transfer radical polymerization of 2-hydroxyethyl methacrylate,” Macromolecules, vol. 32, no. 18, pp. 5772–5776, 1999.
[10]
Y. Wang, P. Spencer, X. Yao, and Q. J. Ye, “Effect of coinitiator and wafer on the photoreactivity and photopolymerization of HEMA/camphoquinone-based reactant mixtures,” Journal of Biomedical Materials Research A, vol. 78, no. 4, pp. 721–728, 2006.
[11]
X. Guo, Y. Wang, P. Spencer, Q. Ye, and X. Yao, “Effects of water content and initiator composition on photopolymerization of a model BisGMA/HEMA resin,” Dental Materials, vol. 24, no. 6, pp. 824–831, 2008.
[12]
E. Andrzejewska, M. Podgorska-Golubska, I. Stepniak, and M. Andrzejewski, “Photoinitiated polymerization in ionic liquids: kinetics and viscosity effects,” Polymer, vol. 50, no. 9, pp. 2040–2047, 2009.
[13]
P. F. Heelis, “The photophysical and photochemical properties of flavins (isoalloxazines),” Chemical Society Reviews, vol. 11, no. 1, pp. 15–39, 1982.
[14]
J. Jakubiak, X. Allonas, J. P. Fouassier et al., “Camphorquinone-amines photoinitating systems for the initiation of free radical polymerization,” Polymer, vol. 44, no. 18, pp. 5219–5226, 2003.
[15]
C. M. Previtali, S. G. Bertolotti, M. G. Neumann, I. A. Pastre, A. M. Rufs, and M. V. Encinas, “Laser flash photolysis study of the photoinitiator system safranine T-aliphatic amines for vinyl polymerization,” Macromolecules, vol. 27, no. 25, pp. 7454–7458, 1994.
[16]
M. V. Encinas, A. M. Rufs, S. G. Bertolotti, and C. M. Previtali, “Xanthene dyes/amine as photoinitiators of radical polymerization: a comparative and photochemical study in aqueous medium,” Polymer, vol. 50, no. 13, pp. 2762–2767, 2009.
[17]
J. Alvarez, E. A. Lissi, and M. V. Encinas, “Effect of the initiator absorbance on the transition-metal complex photoinitiated polymerization,” Journal of Polymer Science A, vol. 36, no. 1, pp. 207–208, 1998.
[18]
P. S. Song and D. E. Metzler, “Photochemical degradation of flavins. IV. Studies of the anaerobic photolysis of riboflavin,” Photochemistry and Photobiology, vol. 6, no. 10, pp. 691–709, 1967.
[19]
C. G. Hatchard and C. A. Parker, “A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer,” Proceedings of Royal Society London A, vol. 235, no. 1203, pp. 518–536, 1956.
[20]
I. Ahmad, K. Iqbal, M. A. Sheraz et al., “Photoinitiated polymerization of 2-hydroxyethyl methacrylate by Riboflavin/Triehanolamine in aqueous solution: a kinetic study,” ISRN Pharmaceutics, vol. 2013, Article ID 958712, 7 pages, 2013.
[21]
I. Ahmad and G. Tollin, “Solvent effects of flavin electron transfer reactions,” Biochemistry, vol. 20, no. 20, pp. 5925–5928, 1981.
[22]
I. Ahmad, Q. Fasihullah, and F. H. M. Vaid, “Photolysis of formylmethylflavin in aqueous and organic solvents,” Photochemical and Photobiological Sciences, vol. 5, no. 7, pp. 680–685, 2006.
[23]
P. Maurel, “Relevance of dielectric constant and solvent hydrophobicity to the organic solvent effect in enzymology,” The Journal of Biological Chemistry, vol. 253, no. 5, pp. 1677–1683, 1978.
[24]
J. D. Biasutti, G. E. Roberts, F. P. Lucien, and J. P. A. Heuts, “Substituent effects in the catalytic chain transfer polymerization of 2-hydroxyethyl methacrylate,” European Polymer Journal, vol. 39, no. 3, pp. 429–435, 2003.
[25]
I. Ahmad, Q. Fasihullah, and F. H. M. Vaid, “A study of simultaneous photolysis and photoaddition reactions of riboflavin in aqueous solution,” Journal of Photochemistry and Photobiology B, vol. 75, no. 1-2, pp. 13–20, 2004.
[26]
B. Orellana, A. M. Rufs, M. V. Encinas, C. M. Previtali, and S. Bertolotti, “The photoinitiation mechanism of vinyl polymerization by riboflavin/triethanolamine in aqueous medium,” Macromolecules, vol. 32, no. 20, pp. 6570–6573, 1999.