全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Controlled Release Kinetics in Hydroxy Double Salts: Effect of Host Anion Structure

DOI: 10.1155/2014/710487

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanodimensional layered metal hydroxides such as layered double hydroxides (LDHs) and hydroxy double salts (HDSs) can undergo anion exchange reactions releasing intercalated anions. Because of this, these metal hydroxides have found applications in controlled release delivery of bioactive species such as drugs and pesticides. In this work, isomers of hydroxycinnamate were used as model compounds to systematically explore the effects of anion structure on the rate and extent of anion release in HDSs. Following intercalation and subsequent release of the isomers, it has been demonstrated that the nature and position of substituent groups on intercalated anions have profound effects on the rate and extent of release. The extent of release was correlated with the magnitude of dipole moments while the rate of reaction showed strong dependence on the extent of hydrogen bonding within the layers. The orthoisomer showed a more sustained and complete release as compared to the other isomers. 1. Introduction Nanodimensional layered double hydroxides (LDHs) and hydroxy double salts (HDSs) have been shown to undergo ion exchange reactions with a variety of inorganic and organic ions [1–3]. This ion exchange capability, coupled with the ability to vary the intralayer metal ions, has enabled fine-tuning of these materials for different applications which range from catalysis to isomer separation [3–6]. LDHs and HDSs have a brucite type layer structure in which magnesium ions are surrounded by six hydroxide ions in an approximately octahedral geometry with exchangeable anions occupying the interlayer region [7]. LDHs have a general formula and HDSs can be represented as where M2+ and Me2+ represent different divalent metal ions. In both LDHs and HDSs, is an exchangeable anion which balances the charge and controls the interlayer separation and -spacing. Anion exchange ability, potential for sustained release, and biocompatibility of the LDHs and HDSs have made them useful in the uptake, storage, and controlled release of bioactive materials such as drugs and plant growth regulators [8–11]. The rate of release of stored drugs and pesticides depends on the intralayer metal composition of the host materials and the size of the intercalated drugs and pesticides [10, 12]. In addition to the effect of the layer metal ion composition and size of intercalated drugs, the structure of the intercalated drugs is expected to significantly affect their rates of release. In studies involving intercalation reactions, it has been observed that LDHs and HDSs exhibit selectivity when

References

[1]  S. Yamanaka, T. Sako, and M. Hattori, “Anion exchange in basic copper acetate,” Chemistry Letters, pp. 1869–1872, 1989.
[2]  E. Kandare and J. M. Hossenlopp, “Hydroxy double salt anion exchange kinetics: effects of precursor structure and anion sizet,” Journal of Physical Chemistry B, vol. 109, no. 17, pp. 8469–8475, 2005.
[3]  P. K. Dutta and M. Puri, “Anion exchange in lithium aluminate hydroxides,” Journal of Physical Chemistry, vol. 93, no. 1, pp. 376–381, 1989.
[4]  B. M. Choudary, V. S. Jaya, B. R. Reddy, M. L. Kantam, M. M. Rao, and S. S. Madhavendra, “Synthesis, characterization, ion exchange, and catalytic properties of nanobinary and ternary metal oxy/hydroxides,” Chemistry of Materials, vol. 17, no. 10, pp. 2740–2743, 2005.
[5]  A. M. Fogg, J. S. Dunn, S.-G. Shyu, D. R. Cary, and D. O'Hare, “Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl·H2O,” Chemistry of Materials, vol. 10, no. 1, pp. 351–355, 1998.
[6]  T. Ikeda, H. Amoh, and T. Yasunaga, “Stereoselective exchange kinetics of L- and D-histidines for Cl- in the interlayer of a hydrotalcite-like compound by the chemical relaxation method,” Journal of the American Chemical Society, vol. 106, no. 20, pp. 5772–5775, 1984.
[7]  M. Meyn, K. Beneke, and G. Lagaly, “Anion-exchange reactions of hydroxy double salts,” Inorganic Chemistry, vol. 32, no. 7, pp. 1209–1215, 1993.
[8]  V. Ambrogi, G. Fardella, G. Grandolini, L. Perioli, and M. C. Tiralti, “Intercalation compounds of hydrotalcite-like anionic clays with anti-inflammatory agents, II: uptake of diclofenac for a controlled release formulation,” AAPS PharmSciTech, vol. 3, no. 3, p. E26, 2002.
[9]  M. Z. Bin Hussein, Z. Zainal, A. H. Yahaya, and D. W. V. Foo, “Controlled release of a plant growth regulator, α-naphthaleneacetate from the lamella of Zn-Al-layered double hydroxide nanocomposite,” Journal of Controlled Release, vol. 82, no. 2-3, pp. 417–427, 2002.
[10]  A. I. Khan, A. Ragavan, B. Fong et al., “Recent developments in the use of layered double hydroxides as host materials for the storage and triggered release of functional anions,” Industrial and Engineering Chemistry Research, vol. 48, no. 23, pp. 10196–10205, 2009.
[11]  M. Silion, D. Hritcu, I. M. Jaba et al., “In vitro and in vivo behavior of ketoprofen intercalated into layered double hydroxides,” Journal of Materials Science, vol. 21, no. 11, pp. 3009–3018, 2010.
[12]  J.-H. Yang, Y.-S. Han, M. Park, T. Park, S.-J. Hwang, and J.-H. Choy, “New inorganic-based drug delivery system of indole-3-acetic acid-layered metal hydroxide nanohybrids with controlled release rate,” Chemistry of Materials, vol. 19, no. 10, pp. 2679–2685, 2007.
[13]  L. Lei, R. P. Vijayan, and D. O'Hare, “Preferential anion exchange intercalation of pyridinecarboxylate and toluate isomers in the layered double hydroxide [LiAl2(OH)6]Cl·H2O,” Journal of Materials Chemistry, vol. 11, no. 12, pp. 3276–3280, 2001.
[14]  B. Lotsch, F. Millange, R. I. Walton, and D. O'Hare, “Separation of nucleoside monophosphates using preferential anion exchange intercalation in layered double hydroxides,” Solid State Sciences, vol. 3, no. 8, pp. 883–886, 2001.
[15]  H. Tagaya, N. Sasaki, H. Morioka, and J. Kadokawa, “Preparation of new inorganic—organic layered compounds, hydroxy double salts, and preferential intercalation of organic carboxylic acids into them,” Molecular Crystals and Liquid Crystals Science and Technology A, vol. 341, pp. 413–418, 2000.
[16]  P. P. Kumar, A. G. Kalinichev, and R. J. Kirkpatrick, “Hydration, swelling, interlayer structure, and hydrogen bonding in organolayered double hydroxides: insights from molecular dynamics simulation of citrate-intercalated hydrotalcite,” Journal of Physical Chemistry B, vol. 110, no. 9, pp. 3841–3844, 2006.
[17]  S. V. Prasanna and P. V. Kamath, “Anion-exchange reactions of layered double hydroxides: interplay between coulombic and h-bonding interactions,” Industrial and Engineering Chemistry Research, vol. 48, no. 13, pp. 6315–6320, 2009.
[18]  Z. Gu, A. C. Thomas, Z. P. Xu, J. H. Campbell, and G. Q. Lu, “In vitro sustained release of LMWH from MgAl-layered double hydroxide nanohybrids,” Chemistry of Materials, vol. 20, no. 11, pp. 3715–3722, 2008.
[19]  J. T. Rajamathi, S. Britto, and M. Rajamathi, “Synthesis and anion exchange reactions of a layered Copper-Zinc,” Journal of Chemical Sciences, vol. 117, no. 6, pp. 629–633, 2005.
[20]  M. Frisch, G. Trucks, H. Schlegel, et al., “Gaussian 98, Revision A.11.4,” 2002.
[21]  S. Majoni and J. M. Hossenlopp, “Anion exchange kinetics of nanodimensional layered metal hydroxides: use of isoconversional analysis,” Journal of Physical Chemistry A, vol. 114, no. 49, pp. 12858–12869, 2010.
[22]  C. Chouillet, J.-M. Krafft, C. Louis, and H. Lauron-Pernot, “Characterization of zinc hydroxynitrates by diffuse reflectance infrared spectroscopy—structural modifications during thermal treatment,” Spectrochimica Acta A, vol. 60, no. 3, pp. 505–511, 2004.
[23]  W. Fujita and K. Awaga, “Magnetic properties of Cu2(OH)3(alkanecarboxylate) compounds: drastic modification with extension of the Alkyl chain,” Inorganic Chemistry, vol. 35, no. 7, pp. 1915–1917, 1996.
[24]  R. ?wis?ocka, M. Kowczyk-Sadowy, M. Kalinowska, and W. Lewandowski, “Spectroscopic (FT-IR, FT-Raman,1H and13C NMR) and theoretical studies of p-coumaric acid and alkali metal p-coumarates,” Spectroscopy, vol. 27, no. 1, pp. 35–48, 2012.
[25]  T. Biswick, W. Jones, A. Pacu?a, E. Serwicka, and J. Podobinski, “The role of anhydrous zinc nitrate in the thermal decomposition of the zinc hydroxy nitrates Zn5(OH)8(NO3)2·2H2O and ZnOHNO3·H2O,” Journal of Solid State Chemistry, vol. 180, no. 4, pp. 1171–1179, 2007.
[26]  S.-H. Park and E. L. Cheol, “Synthesis, characterization and magnetic properties of a novel disulfonate-pillared copper hydroxide Cu2(OH)3(DS4)1/2, DS4 = 1,4-butanedisulfonate,” Bulletin of the Korean Chemical Society, vol. 27, no. 10, pp. 1587–1592, 2006.
[27]  P. Rabu, M. Drillon, and C. Hornick, “Structural and spectroscopic study of organic-inorganic transition metal based layered magnets,” Analusis, vol. 28, no. 2, pp. 103–108, 2000.
[28]  L. Lei, A. Khan, and D. O'Hare, “Selective anion-exchange intercalation of isomeric benzoate anions into the layered double hydroxide [LiAl2(OH)6]Cl·H2O,” Journal of Solid State Chemistry, vol. 178, no. 12, pp. 3648–3654, 2005.
[29]  W. Krause, H.-J. Bernhardt, R. S. W. Braithwaite, U. Kolitsch, and R. Pritchard, “Kapellasite, Cu3Zn(OH)6Cl2, a new mineral from Lavrion, Greece, and its crystal structure,” Mineralogical Magazine, vol. 70, no. 3, pp. 329–340, 2006.
[30]  L. C. Andrews, L. R. Bernstein, C. M. Foris et al., Powder Diffraction File, Inorganic, International Centre for Diffraction Data, Newtown Square, Pennsylvania, 2009.
[31]  A. Ragavan, A. I. Khan, and D. O'Hare, “Isomer selective ion-exchange intercalation of nitrophenolates into the layered double hydroxide [LiAl2(OH)6]Cl·xH2O,” Journal of Materials Chemistry, vol. 16, no. 6, pp. 602–608, 2006.
[32]  A. Ragavan, A. Khan, and D. O'Hare, “Selective intercalation of chlorophenoxyacetates into the layered double hydroxide [LiAl2(OH)6]Cl·xH2O,” Journal of Materials Chemistry, vol. 16, no. 42, pp. 4155–4159, 2006.
[33]  S. Vyazovkin and C. A. Wight, “Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data,” Thermochimica Acta, vol. 340-341, pp. 53–68, 1999.
[34]  R. E. Johnsen, F. Krumeich, and P. Norby, “Structural and microstructural changes during anion exchange of CoAl layered double hydroxides: an in situ X-ray powder diffraction study,” Journal of Applied Crystallography, vol. 43, no. 3, pp. 434–447, 2010.
[35]  G. R. Williams, T. G. Dunbar, A. J. Beer, A. M. Fogg, and D. O'Hare, “Intercalation chemistry of the novel layered double hydroxides [MAl4(OH)12](NO3)2·yH2O (M?=?Zn, Cu, Ni and Co). 1: new organic intercalates and reaction mechanisms,” Journal of Materials Chemistry, vol. 16, no. 13, pp. 1222–1230, 2006.
[36]  T. E. M. Ten Hulscher and G. Cornelissen, “Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants—a review,” Chemosphere, vol. 32, no. 4, pp. 609–626, 1996.
[37]  M. Avrami, “Kinetics of phase change. I: general theory,” The Journal of Chemical Physics, vol. 7, no. 12, pp. 1103–1112, 1939.
[38]  M. Avrami, “Kinetics of phase change. II Transformation-time relations for random distribution of nuclei,” The Journal of Chemical Physics, vol. 8, no. 2, pp. 212–224, 1940.
[39]  R. J. Francis, S. O'Brien, A. M. Fogg et al., “Time-resolved in-situ energy and angular dispersive X-ray diffraction studies of the formation of the microporous gallophosphate ULM-5 under hydrothermal conditions,” Journal of the American Chemical Society, vol. 121, no. 5, pp. 1002–1015, 1999.
[40]  Z. Miladinovi?, J. Zakrzewska, B. Kova?evi?, and G. Ba?i?, “Monitoring of crystallization processes during synthesis of zeolite A by in situ 27Al NMR spectroscopy,” Materials Chemistry and Physics, vol. 104, no. 2-3, pp. 384–389, 2007.
[41]  R. Serna-Guerrero and A. Sayari, “Modeling adsorption of CO2 on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curves,” Chemical Engineering Journal, vol. 161, no. 1-2, pp. 182–190, 2010.
[42]  J. D. Hancock and J. H. Sharp, “Method of comparing solid- state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3,” Journal of the American Ceramic Society, vol. 55, no. 2, pp. 74–77, 1972.
[43]  F. Auriemma, C. De Rosa, and R. Triolo, “Slow crystallization kinetics of poly(vinyl alcohol) in confined environment during cryotropic gelation of aqueous solutions,” Macromolecules, vol. 39, no. 26, pp. 9429–9434, 2006.
[44]  R. V. Ramanujan and Y. R. Zhang, “Quantitative transmission electron microscopy analysis of the nanocrystallization kinetics of soft magnetic alloys,” Physical Review B, vol. 74, no. 22, Article ID 224408, 2006.
[45]  A. G. Kalinichev, P. Padma Kumar, and R. James Kirkpatrick, “Molecular dynamics computer simulations of the effects of hydrogen bonding on the properties of layered double hydroxides intercalated with organic acids,” Philosophical Magazine, vol. 90, no. 17-18, pp. 2475–2488, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133