Peroxisome proliferator-activated receptor gamma (PPARgamma) is a ligand-activated transcription factor that regulates lipid and glucose metabolism. We investigated the effects of Labisia pumila (LP) standardized water extract on PPARgamma transcriptional activity in adipocytes in vitro and in vivo. We used a rat model of dihydrotestosterone- (DHT-) induced polycystic ovary syndrome (PCOS), a condition characterized by insulin resistance. At 9 weeks of age, the PCOS rats were randomly subdivided into two groups: PCOS-LP (50?mg/kg/day of LP) and PCOS-control (1?mL of deionised water) for 4-5 weeks on the same schedule. Real-time RT-PCR was performed to determine the PPARgamma mRNA levels. LP upregulated PPARgamma mRNA level by 40% in the PCOS rats. Western blot analysis further demonstrated the increased PPARgamma protein levels in parallel with upregulation in mRNA. These observations were further proven by adipocytes culture. Differentiated 3T3-L1 adipocytes were treated with final concentration of 100?μg/mL LP and compared to untreated control and 10?μM of rosiglitazone (in type of thiazolidinediones). LP increased PPARgamma expressions at both mRNA and protein levels and enhanced the effect of glucose uptake in the insulin-resistant cells. The data suggest that LP may ameliorate insulin resistance in adipocytes via the upregulation of PPARgamma pathway. 1. Introduction Labisia pumila var. alata (LP) (family, Myrsinaceae) or its local name, Kacip Fatimah, is a herbal plant with long history of being used as traditional medicine by Asian women especially those from the Malay Archipelago [1]. The plant grows in lowland primary forest at shady places or in secondary forests on humus-rich soils [2]. The water decoction is traditionally consumed to maintain women’s pre- and postpartum health [1, 3]. Components identified in LP extracts include flavonoids, ascorbicacid, beta-carotene, anthocyanin, phenols, and total saponins [4, 5]. Insulin resistance is characterized by a decrease in the uptake of glucose, especially by insulin target tissues, including adipose tissue and skeletal muscle [6]. Instead of merely being a storage depot, adipose tissue is now recognized as an important regulator of energy homeostasis [7] and a central player in the development of insulin resistance [8, 9]. One key factor in supporting the central role of adipose tissue in whole-body glucose metabolism is peroxisome proliferator-activated receptor gamma (PPARgamma), a nuclear receptor that is critical both for adipocyte differentiation and for maintenance of mature adipocytes.
References
[1]
I. H. Burkill, Dictionary of the Economic Products of the Malay Peninsula, vol. 2, Crown Agents for the Colonies, London, UK, 1935.
[2]
B. Sunarno, “Revision of the genus Labisia (Myrsinaceae),” Blumea, vol. 50, no. 3, pp. 579–597, 2005.
[3]
M. Zakaria and M. A. Mohd, Traditional Malay Medicinal Plants, Penerbit Fajar Bakti Sdn Bhd, Kuala Lumpur, Malaysia, 1994.
[4]
M. Norhaiza, M. Maziah, and M. Hakiman, “Antioxidative properties of leaf extracts of a popular Malaysian herb, Labisia pumila,” Journal of Medicinal Plant Research, vol. 3, no. 4, pp. 217–223, 2009.
[5]
E. Karimi, H. Z. E. Jaafar, and S. Ahmad, “Phytochemical analysis and antimicrobial activities of methanolic extracts of leaf, stem and root from different varieties of labisa pumila benth,” Molecules, vol. 16, no. 6, pp. 4438–4450, 2011.
[6]
C. Gayet, V. Leray, M. Saito, B. Siliart, and P. Nguyen, “The effects of obesity-associated insulin resistance on mRNA expression of peroxisome proliferator-activated receptor-γ target genes, in dogs,” British Journal of Nutrition, vol. 98, no. 3, pp. 497–503, 2007.
[7]
M. H. Fonseca-Alaniz, J. Takada, M. I. C. Alonso-Vale, and F. B. Lima, “Adipose tissue as an endocrine organ: from theory to practice,” Jornal de Pediatria, vol. 83, no. 5, supplement, pp. S192–S203, 2007.
[8]
A. Guilherme, J. V. Virbasius, V. Puri, and M. P. Czech, “Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes,” Nature Reviews Molecular Cell Biology, vol. 9, no. 5, pp. 367–377, 2008.
[9]
S. E. Kahn, R. L. Hull, and K. M. Utzschneider, “Mechanisms linking obesity to insulin resistance and type 2 diabetes,” Nature, vol. 444, no. 7121, pp. 840–846, 2006.
[10]
M. E. Greene, B. Blumberg, O. W. McBride et al., “isolation of the human peroxisome proliferator activated receptor γ cDNA: expression in hematopoietic cells and chromosomal mapping,” Gene Expression, vol. 4, no. 4-5, pp. 281–299, 1995.
[11]
O. Braissant, F. Foufelle, C. Scotto, M. Dau?a, and W. Wahli, “Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-α, -β, and -γ in the adult rat,” Endocrinology, vol. 137, no. 1, pp. 354–366, 1996.
[12]
S. M. Rangwala and M. A. Lazar, “Peroxisome proliferator-activated receptor γ in diabetes and metabolism,” Trends in Pharmacological Sciences, vol. 25, no. 6, pp. 331–336, 2004.
[13]
J. Velebit, P. B. Kovacic, M. Prebil et al., “Rosiglitazone modulates insulin-induced plasma membrane area changes in single 3T3-L1 adipocytes,” Journal of Membrane Biology, vol. 223, no. 3, pp. 141–149, 2008.
[14]
T. P. Combs, J. A. Wagner, J. Berger et al., “Induction of adipocyte complement-related protein of 30 kilodaltons by PPARγ agonists: a potential mechanism of insulin sensitization,” Endocrinology, vol. 143, no. 3, pp. 998–1007, 2002.
[15]
N. Maeda, M. Takahashi, T. Funahashi et al., “PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein,” Diabetes, vol. 50, no. 9, pp. 2094–2099, 2001.
[16]
J. P. Berger, “Role of PPARγ, transcriptional cofactors, and adiponectin in the regulation of nutrient metabolism, adipogenesis and insulin action: view from the chair,” International Journal of Obesity, vol. 29, no. 1, supplement, pp. S3–S4, 2005.
[17]
M. Penumetcha and N. Santanam, “Nutraceuticals as ligands of PPARγ,” PPAR Research, vol. 2012, Article ID 858352, 7 pages, 2012.
[18]
D. A. Ehrmann, “Polycystic ovary syndrome,” New England Journal of Medicine, vol. 352, no. 12, pp. 1223–1277, 2005.
[19]
A. H. Balen, G. S. Conway, G. Kaltsas et al., “Polycystic ovary syndrome: the spectrum of the disorder in 1741 patients,” Human Reproduction, vol. 10, no. 8, pp. 2107–2111, 1995.
[20]
R. Azziz, “PCOS: a diagnostic challenge,” Reproductive BioMedicine Online, vol. 8, no. 6, pp. 644–648, 2004.
[21]
T. M. Barber, M. I. McCarthy, J. A. H. Wass, and S. Franks, “Obesity and polycystic ovary syndrome,” Clinical Endocrinology, vol. 65, no. 2, pp. 137–145, 2006.
[22]
A. L. Hirschberg, “Polycystic ovary syndrome, obesity and reproductive implications,” Women's Health, vol. 5, no. 5, pp. 529–542, 2009.
[23]
L. Manner?s, M. Fazliana, W. M. Wan Nazaimoon et al., “Beneficial metabolic effects of the Malaysian herb Labisia pumila var. alata in a rat model of polycystic ovary syndrome,” Journal of Ethnopharmacology, vol. 127, no. 2, pp. 346–351, 2010.
[24]
M. M. Yusoff and W. M. Wan Nazaimoon, “Process for preparation of Labisia pumila extract,” United States Patent US7879368B2, 2011.
[25]
L. Manner?s, S. Cajander, A. Holm?ng et al., “A new rat model exhibiting both ovarian and metabolic characteristics of polycystic ovary syndrome,” Endocrinology, vol. 148, no. 8, pp. 3781–3791, 2007.
[26]
M. Fazliana, W. M. Wan Nazaimoon, H. F. Gu, and C.-G. ?stenson, “Labisia pumila extract regulates body weight and adipokines in ovariectomized rats,” Maturitas, vol. 62, no. 1, pp. 91–97, 2009.
[27]
V. P. Knutson and Y. Balba, “3T3-L1 adipocytes as a cell culture model of insulin resistance,” In Vitro Cellular and Developmental Biology, vol. 33, no. 2, pp. 77–81, 1997.
[28]
L. Martinez, M. Berenguer, M. C. Bruce, Y. Le Marchand-Brustel, and R. Govers, “Rosiglitazone increases cell surface GLUT4 levels in 3T3-L1 adipocytes through an enhancement of endosomal recycling,” Biochemical Pharmacology, vol. 79, no. 9, pp. 1300–1309, 2010.
[29]
K. W. Lee, Y. H. Ku, M. Kim, B. Y. Ahn, S. S. Chung, and K. S. Park, “Effects of sulfonylureas on peroxisome proliferator-activated receptor γ activity and on glucose uptake by thiazolidinediones,” Diabetes & Metabolism Journal, vol. 35, no. 4, pp. 340–347, 2011.
[30]
L. S. Chua, S. Y. Lee, N. Abdullah, and M. R. Sarmidi, “Review on Labisia pumila (Kacip Fatimah): bioactive phytochemicals and skin collagen synthesis promoting herb,” Fitoterapia, vol. 83, no. 8, pp. 1322–1335, 2012.
[31]
N. A. Al-Mekhlafi, K. Shaari, F. Abas et al., “Alkenylresorcinols and cytotoxic activity of the constituents isolated from Labisia pumila,” Phytochemistry, vol. 80, pp. 42–49, 2012.
[32]
V. Bhatia and P. Viswanathan, “Insulin resistance and PPAR insulin sensitizers,” Current Opinion in Investigational Drugs, vol. 7, no. 10, pp. 891–897, 2006.
[33]
S. Mudaliar and R. R. Henry, “New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers,” Annual Review of Medicine, vol. 52, pp. 239–257, 2001.
[34]
J. Auwerx, “PPARγ, the ultimate thrifty gene,” Diabetologia, vol. 42, no. 9, pp. 1033–1049, 1999.
[35]
J. M. Olefsky, “Treatment of insulin resistance with peroxisome proliferator-activated receptor γ agonists,” Journal of Clinical Investigation, vol. 106, no. 4, pp. 467–472, 2000.
[36]
J. M. Ntambi and K. Young-Cheul, “Adipocyte differentiation and gene expression,” Journal of Nutrition, vol. 130, no. 12, pp. 3122S–3126S, 2000.
[37]
M. F. White and C. R. Kahn, “The insulin signaling system,” Journal of Biological Chemistry, vol. 269, no. 1, pp. 1–4, 1994.
[38]
F. Giorgino, A. Leonardini, L. Laviola, S. Perrini, and A. Natalicchio, “Cross-talk between PPARγ and insulin signaling and modulation of insulin sensitivity,” PPAR Research, vol. 2009, Article ID 818945, 12 pages, 2009.