Due to the increasing cases of neurodegenerative diseases in recent years, the eventual goal of nerve repair is very important. One approach for achieving a neuronal cell induction is by regenerative pharmacology. Nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) are neurotrophins that play roles in neuronal development, differentiation, and protection. On the other hand, dehydroepiandrosterone (DHEA) is a neurosteroid which has multiple actions in the nervous system. DHEA could be an important agent in regenerative pharmacology for neuronal differentiation during tissue regeneration. In this study, we investigated the possible role of DHEA to modulate NGF and BDNF production. The in vivo level of neurotrophins expression was demonstrated by ELISA in rat harvested brain cortex. Also neurotrophins expression after DHEA treatment was revealed by the increased neurite extension, immunostaining, and BrdU labeling in rats. Anti-NGF and anti-BDNF antibodies were used as suppressive agents on neurogenesis. The results showed that NGF and BDNF are overproduced after DHEA treatment but there is not any overexpression for NT-3 and NT-4. Also DHEA increased neurite extension and neural cell proliferation significantly. Overall, DHEA might induce NGF and BDNF neurotrophins overproduction in cortical neurons which promotes neural cell protection, survival, and proliferation. 1. Introduction The central nervous system (CNS) is composed of an orchestrated control of cell proliferation, motility and maturation of neuronal and glial cells, axonal growth, neurite outgrowth, and the design of synapses. Neurotrophins are originally identified as important peptides involved in the development of nervous system and could determine neuronal differentiation phenotype. The neurotrophins that influence neural development include nerve growth factor (NGF), brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-4/5, and neurotrophin-6 (NT-6) [1, 2]. Nerve growth factor (NGF) is the most important target-derived trophic factor for basal forebrain cholinergic neurons (BFCNs) [3]. These are small proteins, which share more than 50% sequence homology. These factors could enhance survival, proliferation, and differentiation of postmitotic neurons [4]. It is known that they could increase in neuronal numbers and neurite outgrowth [5]. So it is important to find molecules that promote overproduction of the neurotrophins. In this study, we focused to understand the induction of NGF and BDNF through dehydroepiandrosterone (DHEA) as a pharmacological agent.
References
[1]
L. R. Berkemeier, J. W. Winslow, D. R. Kaplan, K. Nikolics, D. V. Goeddel, and A. Rosenthal, “Neurotrophin-5: a novel neurotrophic factor that activates trk and trkB,” Neuron, vol. 7, no. 5, pp. 857–866, 1991.
[2]
M. Noureddini, J. Verdi, S. A. Mortazavi Tabatabaei, S. Sharif, and A. Shoae-Hassani, “Human endometrial stem cell neurogenesis in response to NGF and bFGF,” Cell Biology International, vol. 36, pp. 961–966, 2012.
[3]
R. Levi-Montalcini, “The nerve growth factor: thirty-five years later,” The EMBO Journal, vol. 6, no. 5, pp. 1145–1154, 1987.
[4]
A. M. Davies, “The role of neurotrophins in the developing nervous system,” Journal of Neurobiology, vol. 25, no. 11, pp. 1334–1348, 1994.
[5]
S. Ahmed, B. A. Reynolds, and S. Weiss, “BDNF enhances the differentiation but not the survival of CNS stem cell-derived neuronal precursors,” The Journal of Neuroscience, vol. 15, no. 8, pp. 5765–5778, 1995.
[6]
N. A. Compagnone and S. H. Mellon, “Dehydroepiandrosterone: a potential signalling molecule for neocortical organization during development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 8, pp. 4678–4683, 1998.
[7]
A. Shoae-Hassani, S. A. Mortazavi-Tabatabaei, S. Sharif, H. Rezaei-Khaligh, and J. Verdi, “DHEA provides a microenvironment for endometrial stem cells neurogenesis,” Medical Hypotheses, vol. 76, no. 6, pp. 843–846, 2011.
[8]
V. G. Kimonides, N. H. Khatibi, C. N. Svendsen, M. V. Sofroniew, and J. Herbert, “Dehydroepiandrosterone (DHEA) and DHEA-sulfate (DHEAS) protect hippocampal neurons against excitatory amino acid-induced neurotoxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 4, pp. 1852–1857, 1998.
[9]
S. Bastianetto, C. Ramassamy, J. Poirier, and R. Quirion, “Dehydroepiandrosterone (DHEA) protects hippocampal cells from oxidative stress-induced damage,” Molecular Brain Research, vol. 66, no. 1-2, pp. 35–41, 1999.
[10]
V. G. Kimonides, M. G. Spillantini, M. V. Sofroniew, J. W. Fawcett, and J. Herbert, “Dehydroepiandrosterone antagonizes the neurotoxic effects of corticosterone and translocation of stress-activated protein kinase 3 in hippocampal primary cultures,” Neuroscience, vol. 89, no. 2, pp. 429–436, 1999.
[11]
M. Chopp and Y. Li, “Treatment of neural injury with marrow stromal cells,” The Lancet Neurology, vol. 1, no. 2, pp. 92–100, 2002.
[12]
M. Durand, S. Aguerre, F. Fernandez et al., “Strain-dependent neurochemical and neuroendocrine effects of desipramine, but not fluoxetine or imipramine, in Spontaneously Hypertensive and Wistar-Kyoto rats,” Neuropharmacology, vol. 39, no. 12, pp. 2464–2477, 2000.
[13]
S. Tejani-Butt, J. Kluczynski, and W. P. Paré, “Strain-dependent modification of behavior following antidepressant treatment,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 1, pp. 7–14, 2003.
[14]
C. C. Will, F. Aird, and E. E. Redei, “Selectively bred Wistar-Kyoto rats: an animal model of depression and hyper-responsiveness to antidepressants,” Molecular Psychiatry, vol. 8, no. 11, pp. 925–932, 2003.
[15]
O. Malkesman, T. Asaf, L. Shbiro et al., “Monoamines, BDNF, dehydroepiandrosterone, DHEA-Sulfate, and childhood depression: an animal model study,” Advances in Pharmacological Sciences, vol. 2009, Article ID 405107, 11 pages, 2009.
[16]
R. N. Pechnick, S. Zonis, K. Wawrowsky, J. Pourmorady, and V. Chesnokova, “p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 4, pp. 1358–1363, 2008.
[17]
R. Maayan, O. Morad, P. Dorfman, D. H. Overstreet, A. Weizman, and G. Yadid, “The involvement of dehydroepiandrosterone (DHEA) and its sulfate ester (DHEAS) in blocking the therapeutic effect of electroconvulsive shocks in an animal model of depression,” European Neuropsychopharmacology, vol. 15, no. 3, pp. 253–262, 2005.
[18]
Y. A. Barde, D. Edgar, and H. Thoenen, “Purification of a new neurotrophic factor from mammalian brain,” The EMBO Journal, vol. 1, no. 5, pp. 549–553, 1982.
[19]
A. Rahmani, D. Kheradmand, P. Keyhanvar, A. Shoae-Hassani, and A. Darbandi-Azar, “Neurogenesis and increase in differentiated neural cell survival via phosphorylation of Akt1 after fluoxetine treatment of stem cells,” BioMed Research International, vol. 2013, Article ID 582526, 9 pages, 2013.
[20]
K. K. Karishma and J. Herbert, “Dehydroepiandrosterone (DHEA) stimulates neurogenesis in the hippocampus of the rat, promotes survival of newly formed neurons and prevents corticosterone-induced suppression,” European Journal of Neuroscience, vol. 16, no. 3, pp. 445–453, 2002.
[21]
M. Suzuki, L. S. Wright, P. Marwah, H. A. Lardy, and C. N. Svendsen, “Mitotic neurogenic effects of dehydroepiandrosterone (DHEA) on human neural stem cell cultures derived the fetal cortex,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 9, pp. 3202–3207, 2004.
[22]
A. Shoae-Hassani, S. Sharif, and J. Verdi, “The neurosteroid dehydroepiandrosterone could improve somatic cell reprogramming,” Cell Biology International, vol. 35, no. 10, pp. 1037–1041, 2011.
[23]
M. A. I. ?berg, N. D. ?berg, H. Hedb?cker, J. Oscarsson, and P. S. Eriksson, “Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus,” The Journal of Neuroscience, vol. 20, no. 8, pp. 2896–2903, 2000.
[24]
A. J. Morales, J. J. Nolan, J. C. Nelson, and S. S. C. Yen, “Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age,” Journal of Clinical Endocrinology and Metabolism, vol. 78, pp. 1360–1367, 1994.
[25]
I. Charalampopoulos, V. Alexaki, C. Tsatsanis et al., “Neurosteroids as endogenous inhibitors of neuronal cell apoptosis in aging,” Annals of the New York Academy of Sciences, vol. 1088, pp. 139–152, 2006.
[26]
M. Korte, H. Kang, T. Bonhoeffer, and E. Schuman, “A role for BDNF in the late-phase of hippocampal long-term potentiation,” Neuropharmacology, vol. 37, no. 4-5, pp. 553–559, 1998.
[27]
D. Lindholm, E. Castren, M. Berzaghi, A. Blochl, and H. Thoenen, “Activity-dependent and hormonal regulation of neurotrophin mRNA levels in the brain: implications for neuronal plasticity,” Journal of Neurobiology, vol. 25, no. 11, pp. 1362–1372, 1994.
[28]
E. M. Gubba, J. W. Fawcett, and J. Herbert, “The effects of corticosterone and dehydroepiandrosterone on neurotrophic factor mRNA expression in primary hippocampal and astrocyte cultures,” Molecular Brain Research, vol. 127, no. 1-2, pp. 48–59, 2004.
[29]
I. Lazaridis, I. Charalampopoulos, V. Alexaki et al., “Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF) receptors, preventing neuronal apoptosis,” PLoS Biology, vol. 9, no. 4, Article ID e1001051, 2011.
[30]
T. M. Pham, B. Ickes, D. Albeck, S. S?derstr?m, A.-C. Granholm, and A. H. Mohammed, “Changes in brain nerve growth factor levels and nerve growth factor receptors in rats exposed to environmental enrichment for one year,” Neuroscience, vol. 94, no. 1, pp. 279–286, 1999.