Propolis is a natural resinous mixture produced by honey bees from substances collected from parts of plants, buds, and exudates. Due to its waxy nature and mechanical properties, bees use propolis in the construction and repair of their hives for sealing openings and cracks and smoothing out the internal walls and as a protective barrier against external invaders like snakes, lizards, and so forth, or against weathering threats like wind and rain. Bees gather propolis from different plants, in the temperate climate zone mainly from poplar. Current antimicrobial applications of propolis include formulations for cold syndrome (upper respiratory tract infections, common cold, and flu-like infections), wound healing, treatment of burns, acne, herpes simplex and genitalis, and neurodermatitis. Worldwide propolis has a tremendous popularity, but in India the studies over propolis have just started, not extensively reported except few regions of India like Maharashtra, West Bengal, Tamil Nadu, Gujrat, and Madhya Pradesh. 1. Introduction Propolis is a natural resinous mixture produced by honeybees from substances collected from parts of plants, buds, and exudates. The word propolis is derived from Greek, in which pro stands for “at the entrance to” and polis for “community” or “city,” which means this natural product is used in hive defense. Another name of propolis is bee glue. Due to its waxy nature and mechanical properties, bees use propolis in the construction and repair of their hives—for sealing openings and cracks and smoothing out the internal walls [1, 2] and as a protective barrier against external invaders like snakes, lizards, and so forth, or against wind and rain. Bees gather propolis from different plants in different temperate climatic zones. Honey and propolis provide beneficial effect on human health. Since ancient times propolis has been extensively employed by man, especially in folk medicine to treat several maladies. Egyptians used bee glue to embalm their cadavers as they well knew about its putrefactive properties. Incas employed propolis as an antipyretic agent. Greek and Roman physicians used it as mouth disinfectant and as an antiseptic and healing product in wound treatment, prescribed for topical therapy of cutaneous and mucosal wounds [2]. Propolis was listed as an official drug in the London pharmacopoeias of the 17th century. Due to its antibacterial activity, in Europe propolis became very popular between the 17th and 20th centuries. In Italy bee glue was used as a violin varnish [3] by Stradivari. In the end of the 19th
References
[1]
G. A. Burdock, “Review of the biological properties and toxicity of bee propolis (propolis),” Food and Chemical Toxicology, vol. 36, no. 4, pp. 347–363, 1998.
[2]
V. S. Bankova, S. L. De Castro, and M. C. Marcucci, “Propolis: recent advances in chemistry and plant origin,” Apidologie, vol. 31, no. 1, pp. 3–15, 2000.
[3]
M. Monti, E. Berti, G. Carminati, and M. Cusini, “Occupational and cosmetic dermatitis from propolis,” Contact Dermatitis, vol. 9, no. 2, p. 163, 1983.
[4]
E. Wollenweber, B. M. Hausen, and W. Greenaway, “Phenolic constituents and sensitizing properties of propolis, poplar balsam and balsam of Peru,” Bulletin de Liaison—Groupe Polyphenols, vol. 15, pp. 112–120, 1990.
[5]
K. D. Helfenberg, “The analysis of beeswax and propolis,” Chemiker Zeitungm, vol. 31, pp. 987–998, 1908.
[6]
B. M. Hausen, E. Wollenweber, H. Senff, and B. Post, “Propolis allergy. (II). The sensitizing properties of 1,1-dimethylallyl caffeic acid ester,” Contact Dermatitis, vol. 17, no. 3, pp. 171–177, 1987.
[7]
M. Marcucci, “Propolis: chemical composition, biological properties and therapeutic activity,” Apidologie, vol. 26, no. 2, pp. 83–99, 1995.
[8]
Y. K. Park, S. M. Alencar, and C. L. Aguiar, “Botanical origin and chemical composition of Brazilian propolis,” Journal of Agricultural and Food Chemistry, vol. 50, no. 9, pp. 2502–2506, 2002.
[9]
P. G. Pietta, C. Gardana, and A. M. Pietta, “Analytical methods for quality control of propolis,” Fitoterapia, vol. 73, no. 1, pp. S7–S20, 2002.
[10]
S. L. De Castro, “Propolis: biological and pharmacological activities. Therapeutic uses of this bee-product,” Annual Review of Biomedical Sciences, vol. 3, pp. 49–83, 2001.
[11]
A. H. Banskota, Y. Tezuka, J. K. Prasain, K. Matsushige, I. Saiki, and S. Kadota, “Chemical constituents of Brazilian propolis and their cytotoxic activities,” Journal of Natural Products, vol. 61, no. 7, pp. 896–900, 1998.
[12]
S. M. Alencar, T. L. C. Oldoni, M. L. Castro et al., “Chemical composition and biological activity of a new type of Brazilian propolis: red propolis,” Journal of Ethnopharmacology, vol. 113, no. 2, pp. 278–283, 2007.
[13]
P. Walker and E. Crane, “Constituents of propolis,” Apidologie, vol. 18, pp. 327–334, 1987.
[14]
E. L. Ghisalberti, “Propolis: a review,” Bee World, vol. 60, pp. 59–84, 1979.
[15]
A. Kujumgiev, I. Tsvetkova, Y. Serkedjieva, V. Bankova, R. Christov, and S. Popov, “Antibacterial, antifungal and antiviral activity of propolis of different geographic origin,” Journal of Ethnopharmacology, vol. 64, no. 3, pp. 235–240, 1999.
[16]
N. Kumar, M. K. K. Ahmad, R. Dang, and A. Husain, “Antioxidant and antimicrobial activity of propolis from Tamil Nadu zone,” Journal of Medicinal Plants Research, vol. 2, no. 12, pp. 361–364, 2008.
[17]
M. M. Cowan, “Plant products as antimicrobial agents,” Clinical Microbiology Reviews, vol. 12, no. 4, pp. 564–582, 1999.
[18]
R. A. Laskar, I. Sk, N. Roy, and N. A. Begum, “Antioxidant activity of Indian propolis and its chemical constituents,” Food Chemistry, vol. 122, no. 1, pp. 233–237, 2010.
[19]
N. Roy, S. Mondal, R. A. Laskar, S. Basu, D. Mandal, and N. A. Begum, “Biogenic synthesis of Au and Ag nanoparticles by Indian propolis and its constituents,” Colloids and Surfaces B, vol. 76, no. 1, pp. 317–325, 2010.
[20]
A. Ugur and T. Arslan, “An in vitro study on antimicrobial activity of propolis from Mugla province of Turkey,” Journal of Medicinal Food, vol. 7, no. 1, pp. 90–94, 2004.
[21]
A. N. Koc, S. Silici, F. Multu-Sariguzel, and O. Sagdic, “Antifungal activity of propolis in four different fruit juices,” Food Technology and Biotechnology, vol. 45, pp. 57–.61, 2007.
[22]
A. P. Farnesi, R. Aquino-Ferreira, D. De Jong, J. K. Bastos, and A. E. E. Soares, “Effects of stingless bee and honey bee propolis on four species of bacteria,” Genetics and Molecular Research, vol. 8, no. 2, pp. 635–640, 2009.
[23]
A. N. Ko?, S. Silici, F. Kasap, H. T. H?rmet-?z, H. Mavus-Buldu, and B. D. Ercal, “Antifungal activity of the honeybee products against Candida spp. and Trichosporon spp,” Journal of Medicinal Food, vol. 14, no. 1-2, pp. 128–134, 2011.
[24]
A. Selvan, R. Singh, and D. Prabhu, “Research article: anti-bacteria activity of bee propolis against clinical strains of Streptococcus mutants and synergism with chlorhexidine,” International Journal Pharmaceutical Studies Research, vol. 2, pp. 85–90, 2011.
[25]
A. C. P. Oliveira, C. S. Shinobu, R. Longhini, S. L. Franco, and T. I. E. Svidzinski, “Antifungal activity of propolis extract against yeasts isolated from onychomycosis lesions,” The Memorias do Instituto Oswaldo Cruz, vol. 101, no. 5, pp. 493–497, 2006.
[26]
N. K. K. Hendi, H. S. Naher, and A. H. Al-Charrakh, “In vitro antibacterial and antifungal activity of Iraqi propolis,” Journal of Medicinal Plant Research, vol. 5, no. 20, pp. 5058–5066, 2011.
[27]
K. F. D. Dota, M. E. L. Consolaro, T. I. E. Svidzinski, and M. L. Bruschi, “Antifungal activity of brazilian propolis microparticles against yeasts isolated from vulvovaginal candidiasis,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 201953, 8 pages, 2011.
[28]
Y. K. Park, M. H. Koo, J. A. S. Abreu, M. Ikegaki, J. A. Cury, and P. L. Rosalen, “Antimicrobial activity of propolis on oral microorganisms,” Current Microbiology, vol. 36, no. 1, pp. 24–28, 1998.
[29]
J. M. Grange and R. W. Davey, “Antibacterial properties of propolis (bee glue),” Journal of the Royal Society of Medicine, vol. 83, no. 3, pp. 159–160, 1990.
[30]
I. Kosalec, S. Pepeljnjak, M. Bakmaz, and S. Vladimir-Kne?evi?, “Flavonoid analysis and antimicrobial activity of commercially available propolis products,” Acta Pharmaceutica, vol. 55, no. 4, pp. 423–430, 2005.
[31]
N. Kalogeropoulos, S. J. Konteles, E. Troullidou, I. Mourtzinos, and V. T. Karathanos, “Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus,” Food Chemistry, vol. 116, no. 2, pp. 452–461, 2009.
[32]
H. Fokt, A. Pereira, A. M. Ferreira, A. Cunha, and C. Aguiar, “How do bees prevent hive infections? The antimicrobial properties of propolis. Current Research, Technology and Education,” Topics in Applied Microbiology and Microbial Biotechnology, vol. 1, pp. 481–493, 2010.
[33]
M. Bhadauria, “Propolis prevents hepatorenal injury induced by chronic exposure to carbon tetrachloride,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 235358, 12 pages, 2012.
[34]
V. D. Wagh, R. D. Borkar, M. G. Kalaskar, P. P. Nerkar, and S. J. Surana, “HPLC method for the identification and qualitatively estimation of Tannic acid and Quercetin in Indian propolis,” in Proceedings of the National Conference on Pharmaceutical Analysis, Dr. B A. Marathwada University, Aurangabad, India, October 2011.
[35]
S. Stepanovi?, N. Anti?, I. Daki?, and M. ?vabi?-Vlahovi?, “In vitro antimicrobial activity of propolis and synergism between propolis and antimicrobial drugs,” Microbiological Research, vol. 158, no. 4, pp. 353–357, 2003.
[36]
M. J. Yaghoubi, G. Ghorbani, S. Soleimanian Zad, and R. Satari, “Antimicrobial activity of Iranian propolis and its chemical composition,” Daru, vol. 15, no. 1, pp. 45–48, 2007.
[37]
L. Drago, B. Mombelli, E. De Vecchi, M. C. Fassina, L. Tocalli, and M. R. Gismondo, “In vitro antimicrobial activity of propolis dry extract,” Journal of Chemotherapy, vol. 12, no. 5, pp. 390–395, 2000.
[38]
J. M. Sforcin, A. Fernandes Jr., C. A. M. Lopes, V. Bankova, and S. R. C. Funari, “Seasonal effect on Brazilian propolis antibacterial activity,” Journal of Ethnopharmacology, vol. 73, no. 1-2, pp. 243–249, 2000.
[39]
M. Kartal, S. Yildiz, S. Kaya, S. Kurucu, and G. Top?u, “Antimicrobial activity of propolis samples from two different regions of Anatolia,” Journal of Ethnopharmacology, vol. 86, no. 1, pp. 69–73, 2003.
[40]
J. W. Dobrowolski, S. B. Vohora, K. Sharma, S. A. Shah, S. A. H. Naqvi, and P. C. Dandiya, “Antibacterial, antifungal, antiamoebic, antiinflammatory and antipyretic studies on propolis bee products,” Journal of Ethnopharmacology, vol. 35, no. 1, pp. 77–82, 1991.
[41]
H. EI Fadaly and E. E. Y. EI Badrawy, “Flavonoids of propolis and their antibacterial activities,” Pakistan Journal Biological Science, vol. 21, pp. 204–207, 2001.
[42]
W. Krol, S. Scheller, J. Shani, G. Pietsz, and Z. Czuba, “Synergistic effect of ethanolic extract of propolis and antibiotics on the growth of Staphylococcus aureus,” Arzneimittel-Forschung/Drug Research, vol. 43, no. 5, pp. 607–609, 1993.
[43]
S. Castaldo and F. Capasso, “Propolis, an old remedy used in modern medicine,” Fitoterapia, vol. 73, no. 1, pp. S1–S6, 2002.
[44]
A. Fernandes, E. C. D. Balestrin, and M. L. R. S. Cunha, “Anti-Staphylococcus aureus activity of bee propolis extracts prepared with different ethanol concentrations,” Farm Science Review's, vol. 24, pp. 147–152, 2003.
[45]
M. Popova, V. Bankova, I. Tsvetkova, and A. Kujumgiev, “Comparative study of the biological activity of propolis from different geographic origin: a statistical approach,” Macedonian Pharmaceutical Bulletin, vol. 50, pp. 9–14, 2004.
[46]
K. Bosio, C. Avanzini, A. D'Avolio, O. Ozino, and D. Savoia, “In vitro activity of propolis against Streptococcus pyogenes,” Letters in Applied Microbiology, vol. 31, no. 2, pp. 174–177, 2000.
[47]
F. A. Santos, E. M. A. Bastos, M. Uzeda et al., “Antibacterial activity of Brazilian propolis and fractions against oral anaerobic bacteria,” Journal of Ethnopharmacology, vol. 80, no. 1, pp. 1–7, 2002.
[48]
R. O. Orsi, J. M. Sforcin, V. L. M. Rall, S. R. C. Funari, L. Barbosa, and A. Fernandes, “Susceptibility profile of Salmonella against the antibacterial activity of propolis produced in two regions of Brazil,” Journal of Venomous Animals and Toxins Including Tropical Diseases, vol. 11, pp. 109–116, 2005.
[49]
V. Benkovic, A. Horvat Knezevic, D. Dikic et al., “Radioprotective effects of propolis and quercetin in γ-irradiated mice evaluated by the alkaline comet assay,” Phytomedicine, vol. 15, no. 10, pp. 851–858, 2008.
[50]
S. L. De Castro, K. Salom?o, E. M. De Souza, A. Henriques-Pons, and H. S. Barbosa, “Brazilian green propolis: effects in vitro and in vivo on Trypanosoma cruzi,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 185918, 11 pages, 2011.
[51]
D. Torres, I. Hollands, and E. Palacios, “Effect of an alcoholic extract of propolis on the in vitro growth of Giardia lamblia 720,” Journal of Veterinary Science, vol. 21, no. 1, pp. 15–19, 1990.
[52]
A. P. Dantas, B. P. Olivieri, F. H. M. Gomes, and S. L. de Castro, “Treatment of Trypanosoma cruzi-infected mice with propolis promotes changes in the immune response,” Journal of Ethnopharmacology, vol. 103, no. 2, pp. 187–193, 2006.
[53]
N. Or?oli?, A. B. ?aranovi?, and I. Ba?i?, “Direct and indirect mechanism(s) of antitumour activity of propolis and its polyphenolic compounds,” Planta Medica, vol. 72, no. 1, pp. 20–27, 2006.
[54]
A. Cuesta, A. Rodríguez, M. á. Esteban, and J. Meseguer, “In vivo effects of propolis, a honeybee product, on gilthead seabream innate immune responses,” Fish and Shellfish Immunology, vol. 18, no. 1, pp. 71–80, 2005.
[55]
S. M. Sayed, G. A. Abou EI-Ella, N. M. Wahba et al., “Immune defense of rats immunized with fennel honey, propolis, and bee venom against induced staphylococcal infection,” Journal of Medicinal Food, vol. 12, no. 3, pp. 569–575, 2009.
[56]
G. Fischer, F. R. Concei??o, F. P. L. Leite et al., “Immunomodulation produced by a green propolis extract on humoral and cellular responses of mice immunized with SuHV-1,” Vaccine, vol. 25, no. 7, pp. 1250–1256, 2007.
[57]
M. F. Osman and E. A. Taha, “Anti-oxidant activity of water extract of propolis from different regions in Kafr El-Sheikh Governorate,” Alexandria Juornal of Food Science and Technology, vol. 1, pp. 83–89, 2008.
[58]
D. Popeskovic, D. Kepcija, D. Dimitijevic, and N. Stojanovic, “The antioxidative properties of propolis and some of its components,” Acta Veterinaria, vol. 30, pp. 133–136, 1980.
[59]
J.-Q. Zhao, Y.-F. Wen, M. Bhadauria et al., “Protective effects of propolis on inorganic mercury induced oxidative stress in mice,” Indian Journal of Experimental Biology, vol. 47, no. 4, pp. 264–269, 2009.
[60]
M. G. Miguel, S. Nunes, S. A. Dandlen, A. M. Cavaco, and M. D. Antunes, “Phenols and antioxidant activity of hydro-alcoholic extracts of propolis from Algarve, South of Portugal,” Food and Chemical Toxicology, vol. 48, no. 12, pp. 3418–3423, 2010.
[61]
C. Cruz, A. M. Cavaco, R. Guerra, D. Aantunes, H. Guia, and M. G. Miguel, “A first approach to the optical and antioxidant properties of propolis collected at different sites of algarve region,” in Proceedings of the 4th IASME/WSEAS International Conference on Energy, Environment, Ecosystems and Sustainable Development, Algarve, Portugal, June 2008.
[62]
M. G. Miguel, S. Nunes, S. A. Dandlen S, A. M. Cavaco, and M. D. Antunes, “Antioxidant activity of propolis from algarve,” Advances in Environmental Biology, vol. 5, no. 2, pp. 345–350, 2011.
[63]
N. Oolic, “A review of propolis antitumour action in vivo and in vitro,” Java Authentication and Authorization Service, vol. 2, pp. 1–20, 2010.
[64]
M.-R. Ahn, K. Kunimasa, T. Ohta et al., “Suppression of tumor-induced angiogenesis by Brazilian propolis: major component artepillin C inhibits in vitro tube formation and endothelial cell proliferation,” Cancer Letters, vol. 252, no. 2, pp. 235–243, 2007.
[65]
V. Bankova, M. Popova, and B. Trusheva, “Plant origin of propolis: latest developments and importance for research and medicinal use,” in Beekeeping-from Science to Agribusiness and Apitherapy, L. A. Marghitas and D. Dezmirean, Eds., pp. 40–46, Editura Academic Press, Cluj-Napoca, Romania, 2007.
[66]
N. Or?oli?, K. Bendelja, A. Brbot-?aranovi?, and I. Ba?i?, “Effects of caffeic acid and caffeic acid phenethyl ester, an antioxidants from propolis, on inducing apoptosis in HeLa human cervical carcinoma and Chinese hamster lung V79 fibroblast cells,” Periodicum Biologorum, vol. 106, no. 4, pp. 367–372, 2004.
[67]
V. Bankova, “Chemical diversity of propolis makes it a valuable source of new biologically active compounds,” Journal of ApiProduct and ApiMedical Science, vol. 1, pp. 23–28, 2009.
[68]
N. Or?oli?, S. Terzi?, ?. Mihaljevi?, L. ?ver, and I. Ba?i?, “Effects of local administration of propolis and its polyphenolic compounds on tumor formation and growth,” Biological and Pharmaceutical Bulletin, vol. 28, no. 10, pp. 1928–1933, 2005.
[69]
Y. Ozkul, S. Silici, and E. Ero?lu, “The anticarcinogenic effect of propolis in human lymphocytes culture,” Phytomedicine, vol. 12, no. 10, pp. 742–747, 2005.
[70]
E. C. D. Almeida and H. Menezes, “Anti-inflammatory activity of propolis extracts: a review 2104,” Journal of Venomous Animals and Toxins, vol. 8, pp. 191–212, 2002.
[71]
F. Borrelli, P. Maffia, L. Pinto et al., “Phytochemical compounds involved in the anti-inflammatory effect of propolis extract,” Fitoterapia, vol. 73, no. 1, pp. S53–S63, 2002.
[72]
K. Du Toit, S. Buthelezi, and J. Bodenstein, “Anti-inflammatory and antibacterial profiles of selected compounds found in south african Propolis,” South African Journal of Science, vol. 105, no. 11-12, pp. 470–472, 2009.
[73]
O. K. Mirzoeva and P. C. Calder, “The effect of propolis and its components on eicosanoid production during the inflammatory response,” Prostaglandins Leukotrienes and Essential Fatty Acids, vol. 55, no. 6, pp. 441–449, 1996.
[74]
O. M. Abo-Salem, R. H. El-Edel, G. E. I. Harisa, N. El-Halawany, and M. M. Ghonaim, “Experimental diabetic nephropathy can be prevented by propolis: effect on metabolic disturbances and renal oxidative parameters,” Pakistan Journal of Pharmaceutical Sciences, vol. 22, no. 2, pp. 205–210, 2009.
[75]
F. Hu, W. Zhu, M. Chen, Q. Shou, and Y. Li, “Biological activities of Chinese propolis and Brazilian propolis on streptozotocin-induced type 1 diabetes mellitus in rats,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 468529, 8 pages, 2011.
[76]
V. Dimov, N. Ivanovska, S. Popov, and V. Bankova, “Immunomodulatory action of propolis: IV. Prophylactic activity against Gram-negative infections and adjuvant effect of the water-soluble derivative,” Vaccine, vol. 10, no. 12, pp. 817–823, 1992.
[77]
O. Koru, F. Toksoy, C. H. Acikel et al., “In vitro antimicrobial activity of propolis samples from different geographical origins against certain oral pathogens,” Anaerobe, vol. 13, no. 3-4, pp. 140–145, 2007.
[78]
N. Saavedra, L. Barrientos, C. L. Herrera, M. Alvear, G. Montenegro, and L. A. Salazar, “Effect of Chilean propolis on cariogenic bacteria Lactobacillus fermentum,” Ciencia e Investigacion Agraria, vol. 38, no. 1, pp. 117–125, 2011.
[79]
J. M. Sforcin, E. L. B. Novelli, and S. R. C. Funari, “Seasonal effect of Brazilian propolis on seric biochemical variables,” Journal of Venomous Animals and Toxins Including Tropical Diseases, vol. 8, pp. 244–254, 2002.
[80]
F. Mani, H. C. R. Damasceno, E. L. B. Novelli, E. A. M. Martins, and J. M. Sforcin, “Propolis: effect of different concentrations, extracts and intake period on seric biochemical variables,” Journal of Ethnopharmacology, vol. 105, no. 1-2, pp. 95–98, 2006.
[81]
F. Mani, H. C. R. Damasceno, E. L. B. Novelli, and J. M. Sforcin, “Biochemical determinations of propolis-treated rats: effects of different concentrations, extracts and intake period,” Biosaude, vol. 10, no. 1, pp. 3–16, 2008.
[82]
J. M. Sforcin, “Propolis and the immune system: a review,” Journal of Ethnopharmacology, vol. 113, no. 1, pp. 1–14, 2007.
[83]
O. Rudeschko, A. Machnik, H. D?rfelt, H.-H. Kaatz, B. Schlott, and R. W. Kinne, “A novel inhalation allergen present in the working environment of beekeepers,” Allergy, vol. 59, no. 3, pp. 332–337, 2004.
[84]
O. Gulbahar, G. Ozturk, N. Erdem, A. C. Kazandi, and A. Kokuludag, “Psoriasiform contact dermatitis due to propolis in a beekeeper,” Annals of Allergy, Asthma and Immunology, vol. 94, no. 4, pp. 509–511, 2005.
[85]
J. Hellgren, A. Cervin, S. Nordling, A. Bergman, and L. O. Cardell, “Allergic rhinitis and the common cold—high cost to society,” Allergy, vol. 65, no. 6, pp. 776–783, 2010.
[86]
L. B. Sy, Y.-L. Wu, B.-L. Chiang, Y.-H. Wang, and W.-M. Wu, “Propolis extracts exhibit an immunoregulatory activity in an OVA-sensitized airway inflammatory animal model,” International Immunopharmacology, vol. 6, no. 7, pp. 1053–1060, 2006.
[87]
W.-K. Jung, D.-Y. Lee, Y. H. Choi et al., “Caffeic acid phenethyl ester attenuates allergic airway inflammation and hyperresponsiveness in murine model of ovalbumin-induced asthma,” Life Sciences, vol. 82, no. 13-14, pp. 797–805, 2008.
[88]
G. B. Avan?o and M. L. Braschi, “Preparation and characterization of ethylcellulose microparticles containing propolis,” Journal Basic and Applied Sciences, vol. 29, no. 2, pp. 129–134, 2008.
[89]
B. Trusheva, M. Popova, V. Bankova, I. Tsvetkova, C. Naydensky, and A. G. Sabatini, “A new type of European propolis containing bioactive labdanes,” Rivista Italiana EPPOS, vol. 36, pp. 3–7, 2003.
[90]
S. Kumazawa, K. Hayashi, K. Kajiya, T. Ishii, T. Hamasaka, and T. Nakayama, “Studies of the constituents of Uruguayan propolis,” Journal of Agricultural and Food Chemistry, vol. 50, no. 17, pp. 4777–4782, 2002.
[91]
A. N. Hirata and M. L. Bruschi, “Development and characterization of semisolid systems to deliver propolis in the oral cavity,” Journal Basic Applied Science, vol. 31, no. 1, pp. 33–39, 2010.