Multiple factors have been identified as contributing to polyethylene wear and debris generation of the acetabular lining. Polyethylene wear is the primary limiting factor in the functional behavior and consequent longevity of a total hip arthroplasty (THA). This retrospective study reviewed the clinical and radiographic data of 77 consecutive THAs comparing in vivo polyethylene wear of two similar acetabular cup liners. Minimum follow-up was 7 years (range 7–15). The incidence of measurable wear in a group of machined liners sterilized with ethylene oxide and composed of GUR 1050 stock resin was significantly higher (61%) than the compression-molded, GUR 1020, O2-free gamma irradiation sterilized group (24%) . Clinically, at a 9-year average followup, both groups had comparable HHS scores and incidence of thigh or groin pain, though the machined group had an increased incidence of osteolysis and annual linear wear rate. 1. Introduction Ultra high molecular weight polyethylene (UHMWPE) is currently the most widely used polymer for joint replacement prosthesis. Polyethylene mm head were used in all cases. The ceramicwear is the primary limiting factor in the functional behavior and consequent longevity of a total hip arthroplasty (THA). Polyethylene debris has been often linked to the development of osteolysis with subsequent loss of bone stock and implant fixation [1]. Linear wear rate of polyethylene is closely associated with osteolysis following THA, more so than patient weight, femoral head material, or implant design and offset. Acetabular cup loosening due to polyethylene wear is the most frequent reason for long-term revision in THAs, especially in young and active patients [2, 3]. Multiple factors have been identified as contributing to polyethylene wear and debris generation of acetabular lining. These variables include conformity of the articulating surface, polyethylene thickness, femoral head diameter, polyethylene locking mechanism, polyethylene additives [4], sterilization technique [5, 6], manufacturing method [4, 7], and surgical implantation technique [8]. Linear penetration of the femoral head into the polyethylene occurs through creep and wear. Creep occurs at a rate of approximately 0.18–0.2?mm/year and subsides after approximately the first 24 months. The remaining penetration is considered wear from multifactorial sources and typically occurs at reported rates of 0.05–0.18?mm/year for conventional polyethylene in THA, with compression molding having comparatively less wear [9–11]. This study compares linear wear rate of two similar
References
[1]
W. H. Harris, “Wear and periprosthetic osteolysis the problem,” Clinical Orthopaedics and Related Research, no. 393, pp. 66–70, 2001.
[2]
E. Garcia-Cimbrelo and L. Munuera, “Early and late loosening of the acetabular cup after low-friction arthroplasty,” Journal of Bone and Joint Surgery A, vol. 74, no. 8, pp. 1119–1129, 1992.
[3]
A. Eskelinen, V. Remes, I. Helenius, P. Pulkkinen, J. Nevalainen, and P. Paavolainen, “Total hip arthroplasty for primary osteoarthrosis in younger patients in the Finnish arthroplasty register: 4 661 primary replacements followed for 0-22 years,” Acta Orthopaedica Scandinavica, vol. 76, no. 1, pp. 28–41, 2005.
[4]
S. M. Kurtz, UHMWPE Biomaterials Handbook: Ultra-High Molecular Weight Polyethylene in Total Joint Replacement, Elsevier/Academic, Amsterdam, The Netherlands, 2009.
[5]
P. M. Faris, M. A. Ritter, A. L. Pierce, K. E. Davis, and G. W. Faris, “Polyethylene sterilization and production affects wear in total hip arthroplasties,” Clinical Orthopaedics and Related Research, vol. 453, pp. 305–308, 2006.
[6]
E. García-Rey and E. García-Cimbrelo, “Polyethylene in total hip arthroplasty: half a century in the limelight,” Journal of Orthopaedics and Traumatology, vol. 11, no. 2, pp. 67–72, 2010.
[7]
J. B. Meding, M. Keaton, and K. E. Davis, “Acetabular UHMWPE survival and wear changes with different manufacturing techniques,” Clinical Orthopaedics and Related Research, vol. 469, no. 2, pp. 405–411, 2011.
[8]
I. Nakahara, N. Nakamura, T. Nishii, H. Miki, T. Sakai, and N. Sugano, “Minimum five-year follow-up wear measurement of longevity highly cross-linked polyethylene cup against cobalt-chromium or zirconia heads,” Journal of Arthroplasty, vol. 25, no. 8, pp. 1182–1187, 2010.
[9]
H. McKellop, F. W. Shen, B. Lu, P. Campbell, and R. Salovey, “Effect of sterilization method and other modifications on the wear resistance of acetabular cups made of ultra-high molecular weight polyethylene. A hip-simulator study,” Journal of Bone and Joint Surgery A, vol. 82, no. 12, pp. 1708–1725, 2000.
[10]
L. C. Sutula, J. P. Collier, K. A. Saum et al., “Impact of gamma sterilization on clinical performance of polyethylene in the hip,” Clinical Orthopaedics and Related Research, vol. 319, pp. 28–40, 1995.
[11]
B. H. Currier, J. H. Currier, J. P. Collier, et al., “Effect of fabrication method and resin type on performance of tibial bearings,” Journal of Biomedical Materials Research A, vol. 53, no. 2, pp. 143–151, 2000.
[12]
G. R. Plank, D. M. Estok, O. K. Muratoglu, D. O. O'Connor, B. R. Burroughs, and W. H. Harris, “Contact stress assessment of conventional and highly crosslinked ultra high molecular weight polyethylene acetabular liners with finite element analysis and pressure sensitive film,” Journal of Biomedical Materials Research B, vol. 80, no. 1, pp. 1–10, 2007.
[13]
T. A. Gruen, G. M. McNeice, and H. C. Amstutz, “Modes of failure of cemented stem-type femoral components. A radiographic analysis of loosening,” Clinical Orthopaedics and Related Research, vol. 141, pp. 17–27, 1979.
[14]
J. G. DeLee and J. Charnley, “Radiological demarcation of cemented sockets in total hip replacement,” Clinical Orthopaedics and Related Research, vol. 121, pp. 20–32, 1976.
[15]
M. J. Griffith, M. K. Seidenstein, D. Williams, and J. Charnley, “Socket wear in Charnley low friction arthroplasty of the hip,” Clinical Orthopaedics and Related Research, vol. 137, pp. 37–47, 1978.
[16]
J. Livermore, D. Ilstrup, and B. Morrey, “Effect of femoral head size on wear of the polyethylene acetabular component,” Journal of Bone and Joint Surgery A, vol. 72, no. 4, pp. 518–528, 1990.
[17]
L. C. Benson, J. D. Desjardins, and M. Laberge, “Effects of in vitro wear of machined and molded UHMWPE tibial inserts on TKR kinematics,” Journal of Biomedical Materials Research, vol. 58, no. 5, pp. 496–504, 2001.
[18]
A. V. Lombardi, B. S. Ellison, and K. R. Berend, “Polyethylene wear is influenced by manufacturing technique in modular TKA,” Clinical Orthopaedics and Related Research, vol. 466, no. 11, pp. 2798–2805, 2008.
[19]
J. L. Tipper, A. L. Galvin, E. Ingham, et al., “Comparison of the wear, wear debris and functional biological activity of non-crosslinked and crosslinked GUR 1020 and GUR 1050 polyethylenes used in total hip prostheses,” in Proceedings of the 2nd UHMWPE International Meeting, Torino, Italy, March 2005, http://www.uhmwpe.unito.it/2005/atti/10%20Tipper.pdf.
[20]
M. Semlitsch and H. G. Willert, “Clinical wear behaviour of ultra-high molecular weight polyethylene cups paired with metal and ceramic ball heads in comparison to metal-on-metal pairings of hip joint replacements,” Proceedings of the Institution of Mechanical Engineers H, vol. 211, no. 1, pp. 73–88, 1997.
[21]
J. A. Urban, K. L. Garvin, C. K. Boese et al., “Ceramic-on-polyethylene bearing surfaces in total hip arthroplasty,” Journal of Bone and Joint Surgery A, vol. 83, no. 11, pp. 1688–1694, 2001.
[22]
A. B. Bankston, E. M. Keating, C. Ranawat, P. M. Faris, and M. A. Ritter, “Comparison of polyethylene wear in machined versus molded polyethylene,” Clinical Orthopaedics and Related Research, vol. 317, pp. 37–43, 1995.