全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamic Stabilization for Challenging Lumbar Degenerative Diseases of the Spine: A Review of the Literature

DOI: 10.1155/2013/753470

Full-Text   Cite this paper   Add to My Lib

Abstract:

Fusion and rigid instrumentation have been currently the mainstay for the surgical treatment of degenerative diseases of the spine over the last 4 decades. In all over the world the common experience was formed about fusion surgery. Satisfactory results of lumbar spinal fusion appeared completely incompatible and unfavorable within years. Rigid spinal implants along with fusion cause increased stresses of the adjacent segments and have some important disadvantages such as donor site morbidity including pain, wound problems, infections because of longer operating time, pseudarthrosis, and fatigue failure of implants. Alternative spinal implants were developed with time on unsatisfactory outcomes of rigid internal fixation along with fusion. Motion preservation devices which include both anterior and posterior dynamic stabilization are designed and used especially in the last two decades. This paper evaluates the dynamic stabilization of the lumbar spine and talks about chronologically some novel dynamic stabilization devices and thier efficacies. 1. Introduction Today, low back pain is one of the most important problem in decreasing the quality of life as a result of lumbar disc degeneration [1–4]. It is thought that the origin of low back pain results from degenerative intervertebral disc and facet joints. Segmental instability significantly contributed to lower back pain. Instability associated with intervertebral disc degeneration is represented first by Knutsson in 1944 [5]. Knutsson also described the abnormal flexion-extention slipping in X-ray along with disc degeneration and told that segmental instability should be if sagittal slipping is greater than 3?mm in dynamic X-ray. Degeneration process of the lumbar spine and pathology of discogenic pain were described by Kirkaldy-Willis and Farfan in 1982 [2]. They explained that degenerative instability of the spine began primarily with disc degeneration which contains dehydration of intervertebral disc along with decrease in tension of the annulus fibrosis. It is followed by decrease of disc height, and then this process continues with hypertrophy of the facet joint and ligamentum flavum. At the end spinal stenosis and degenerative spondylolisthesis, which have caused low back pain, occur. Besides, Frymoyer and Selby revealed the concept of primary and secondary instabilities and put the degenerative disc disease, degenerative spondylolisthesis, and degenerative scoliotic deformities into the group of primary instability [6, 7]. Panjabi also well defined the term instability that leads to a pain,

References

[1]  A. C. Schwarzer, C. N. Aprill, R. Derby, J. Fortin, G. Kine, and N. Bogduk, “The relative contributions of the disc and zygapophyseal joint in chronic low back pain,” Spine, vol. 19, no. 7, pp. 801–806, 1994.
[2]  W. H. Kirkaldy-Willis and H. F. Farfan, “Instability of the lumbar spine,” Clinical Orthopaedics and Related Research, vol. 165, pp. 110–123, 1982.
[3]  S. D. Kuslich, C. L. Ulstrom, and C. J. Michael, “The tissue origin of low back pain and sciatica: a report of pain response to tissue stimulation during operations on the lumbar spine using local anesthesia,” Orthopedic Clinics of North America, vol. 22, no. 2, pp. 181–187, 1991.
[4]  T. Kaner, M. Sasani, T. Oktenoglu, and A. F. Ozer, “Dynamic stabilization of the spine: a new classification system,” Turkish Neurosurgery, vol. 20, no. 2, pp. 205–215, 2010.
[5]  F. Knutsson, “The instability associated with disc degeneration in the lumbar spine,” Acta Radiologica, vol. 25, pp. 593–609, 1944.
[6]  J. W. Frymoyer, “Segmental instability,” in The Adult Spine, J. W. Frymoyer, Ed., pp. 1873–1891, Raven Press, New York, NY, USA, 1991.
[7]  J. W. Frymoyer and D. K. Selby, “Segmental instability: rationale for treatment,” Spine, vol. 10, no. 3, pp. 280–286, 1985.
[8]  M. M. Panjabi, “Clinical spinal instability and low back pain,” Journal of Electromyography and Kinesiology, vol. 13, no. 4, pp. 371–379, 2003.
[9]  E. C. Benzel, “Stability and instability of the spine,” in Biomechanics of Spine Stabilization, pp. 29–43, AANS, New York, NY, USA, 2001.
[10]  W. J. Mixter and J. S. Barr, “Rupture of the intervertebral disc with involvement of the spinal canal,” The New England Journal of Medicine, vol. 211, pp. 210–215, 1934.
[11]  H. Striffeler, U. Groger, and H. J. Reulen, “″Standard″ microsurgical lumbar discectomy vs. ″Conservative″ microsurgical discectomy; a preliminary study,” Acta Neurochirurgica, vol. 112, no. 1-2, pp. 62–64, 1991.
[12]  W. Caspar, B. Campbell, D. D. Barbier, R. Kretschmmer, and Y. Gotfried, “The Caspar microsurgical discectomy and comparison with a conventional standard lumbar disc procedure,” Neurosurgery, vol. 28, no. 1, pp. 78–87, 1991.
[13]  P. A. Vaughan, B. W. Malcolm, and G. L. Maistrelli, “Results of L4-L5 disc excision alone versus disc excision and fusion,” Spine, vol. 13, no. 6, pp. 690–695, 1988.
[14]  R. W. Hu, S. Jaglal, T. Axcell, and G. Anderson, “A population-based study of reoperations after back surgery,” Spine, vol. 22, no. 19, pp. 2265–2271, 1997.
[15]  K. H. Bridwell, T. A. Sedgewick, M. F. O'Brien, L. G. Lenke, and C. Baldus, “The role of fusion and instrumentation in the treatment of degenerative spondylolisthesis with spinal stenosis,” Journal of Spinal Disorders, vol. 6, no. 6, pp. 461–472, 1993.
[16]  R. J. Nasca, “Rationale for spinal fusion in lumbar spinal stenosis,” Spine, vol. 14, no. 4, pp. 451–454, 1989.
[17]  H. L. Feffer, S. W. Wiesel, J. M. Cuckler, and R. H. Rothman, “Degenerative spondylolisthesis: to fuse or not to fuse,” Spine, vol. 10, no. 3, pp. 287–289, 1985.
[18]  K. J. Schnake, S. Schaeren, and B. Jeanneret, “Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis,” Spine, vol. 31, no. 4, pp. 442–449, 2006.
[19]  R. B. Cloward, “The treatment of ruptured lumbar intervertebral discs by vertebral body fusion. I. Indications, operative technique, after care,” Journal of Neurosurgery, vol. 10, no. 2, pp. 154–168, 1953.
[20]  T. Andersen, F. B. Christensen, E. S. Hansen, and C. Bünger, “Pain 5 years after instrumented and non-instrumented posterolateral lumbar spinal fusion,” European Spine Journal, vol. 12, no. 4, pp. 393–399, 2003.
[21]  A. F. DePalma and R. H. Rothman, “The nature of pseudarthrosis,” Clinical Orthopaedics and Related Research, vol. 59, pp. 113–118, 1968.
[22]  P. R. Harrington, “The history and development of Harrington instrumentation,” Clinical Orthopaedics, vol. 93, pp. 110–112, 1973.
[23]  R. Roy-Camille, M. Roy-Camille, and C. Demeulenaere, “Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses,” La Presse Medicale, vol. 78, no. 32, pp. 1447–1448, 1970.
[24]  W. Dick, P. Kluger, F. Magerl, O. Woersd?rfer, and G. Z?ch, “A new device for internal fixation of thoracolumbar and lumbar spine fractures: the 'fixateur interne',” Paraplegia, vol. 23, no. 4, pp. 225–232, 1985.
[25]  J. L. Scifert, K. Sairyo, V. K. Goel et al., “Stability analysis of an enhanced load sharing posterior fixation device and its equivalent conventional device in a calf spine model,” Spine, vol. 24, no. 21, pp. 2206–2213, 1999.
[26]  N. Boos and J. K. Webb, “Pedicle screw fixation in spinal disorders: a European view,” European Spine Journal, vol. 6, no. 1, pp. 2–18, 1997.
[27]  K. C. Booth, K. H. Bridwell, B. A. Eisenberg, C. R. Baldus, and L. G. Lenke, “Minimum 5-year results of degenerative spondylolisthesis treated with decompression and instrumented posterior fusion,” Spine, vol. 24, no. 16, pp. 1721–1727, 1999.
[28]  J. A. Turner, M. Ersek, L. Herron, and R. Deyo, “Surgery for lumbar spinal stenosis: attempted meta-analysis of the literature,” Spine, vol. 17, no. 1, pp. 1–8, 1992.
[29]  P. V. Mummaneni, R. W. Haid, and G. E. Rodts, “Lumbar interbody fusion: state-of-the-art technical advances,” Journal of Neurosurgery, vol. 101, no. 1, pp. 24–30, 2004.
[30]  J. Glaser, M. Stanley, H. Sayre, J. Woody, E. Found, and K. Spratt, “A 10-year follow-up evaluation of lumbar spine fusion with pedicle screw fixation,” Spine, vol. 28, no. 13, pp. 1390–1395, 2003.
[31]  P. Fritzell, O. Hagg, D. Jonsson, and A. Nordwall, “Swedish Lumbar Spine Study Group. Cost effectiveness of lumbar fusion and nonsurgical treatment for chronic low back pain in the Swedish lumbar spine study: a multicenter, randomized, controlled trial from the Swedish lumbar spine study group,” Spine, vol. 29, no. 4, pp. 421–434, 2004.
[32]  P. C. McAfee, I. D. Farey, C. E. Sutterlin, K. R. Gurr, K. E. Warden, and B. W. Cunningham, “The effect of spinal implant rigidity on vertebral bone density: a canine model,” Spine, vol. 16, no. 6, pp. S190–S197, 1991.
[33]  T. R. Lehmann, K. F. Spratt, J. E. Tozzi, et al., “Long-term follow-up of lower lumbar fusion patients,” Spine, vol. 12, no. 2, pp. 97–104, 1987.
[34]  M. D. Rahm and B. B. Hall, “Adjacent-segment degeneration after lumbar fusion with instrumentation: a retrospective study,” Journal of Spinal Disorders, vol. 9, no. 5, pp. 392–400, 1996.
[35]  E. M. Younger and M. W. Chapman, “Morbidity at bone graft donor sites,” Journal of Orthopaedic Trauma, vol. 3, no. 3, pp. 192–195, 1989.
[36]  J. C. Banwart, M. A. Asher, and R. S. Hassanein, “Iliac crest bone graft harvest donor site morbidity: a statistical evaluation,” Spine, vol. 20, no. 9, pp. 1055–1060, 1995.
[37]  T. Kaner, S. Dalbayrak, T. Oktenoglu, M. Sasani, A. L. Aydin, and F. O. Ozer, “Comparison of posterior dynamic and posterior rigid transpedicular stabilization with fusion to treat degenerative spondylolisthesis,” Orthopedics, vol. 33, no. 5, 2010.
[38]  J. L. West, J. W. Ogilvie, and D. S. Bradford, “Complications of the variable screw plate pedicle screw fixation,” Spine, vol. 16, no. 5, pp. 576–579, 1991.
[39]  H. Z. Xu, X. Y. Wang, Y. L. Chi et al., “Biomechanical evaluation of a dynamic pedicle screw fixation device,” Clinical Biomechanics, vol. 21, no. 4, pp. 330–336, 2006.
[40]  D. S. McNally and M. A. Adams, “Internal intervertebral disc mechanics as revealed by stress profilometry,” Spine, vol. 17, no. 1, pp. 66–73, 1992.
[41]  R. P. Nockels, “Dynamic stabilization in the surgical management of painful lumbar spinal disorders,” Spine, vol. 30, no. 16, pp. S68–S72, 2005.
[42]  D. K. Sengupta, “Dynamic stabilization devices in the treatment of low back pain,” Neurology India, vol. 53, no. 4, pp. 466–474, 2005.
[43]  M. Bothmann, E. Kast, G. J. Boldt, and J. Oberle, “Dynesys fixation for lumbar spine degeneration,” Neurosurgical Review, vol. 31, no. 2, pp. 189–196, 2008.
[44]  T. Kaner, M. Sasani, T. Oktenoglu, M. Cosar, and A. F. Ozer, “Utilizing dynamic rods with dynamic screws in the surgical treatment of chronic instability: a prospective clinical study,” Turkish Neurosurgery, vol. 19, no. 4, pp. 319–326, 2009.
[45]  P. Khoueir, K. A. Kim, and M. Y. Wang, “Classification of posterior dynamic stabilization devices,” Neurosurgical Focus, vol. 22, no. 1, article E3, 2007.
[46]  C. M. Bono, M. Kadaba, and A. R. Vaccaro, “Posterior pedicle fixation-based dynamic stabilization devices for the treatment of degenerative diseases of the lumbar spine,” Journal of Spinal Disorders and Techniques, vol. 22, no. 5, pp. 376–383, 2009.
[47]  T. Oktenoglu, A. F. Ozer, M. Sasani et al., “Posterior dynamic stabilization in the treatment of lumbar degenerative disc disease: 2-year follow-up,” Minimally Invasive Neurosurgery, vol. 53, no. 3, pp. 112–116, 2010.
[48]  A. F. Ozer, N. R. Crawford, M. Sasani, et al., “Dynamic lumbar pedicle screw-rod stabilization: two-year follow-up and comparison with fusion,” The Open Orthopaedics Journal, vol. 4, pp. 137–141, 2010.
[49]  T. Kaner, M. Sasani, T. Oktenoglu, et al., “Minimum two-year follow-up of cases with recurrent disc herniation treated with microdiscectomy and posterior dynamic transpedicular stabilisation,” The Open Orthopaedics Journal, vol. 4, pp. 120–125, 2010.
[50]  A. V. Strempel, D. Moosmann, C. Stoss, and A. Martin, “Stabilisation of the degenerated lumbar spine in the nonfusion technique with cosmic posterior synamic system,” The Wall Street Journal, vol. 1, no. 1, pp. 40–47, 2006.
[51]  E. J. Carragee, M. Y. Han, P. W. Suen, and D. Kim, “Clinical outcomes after lumbar discectomy for sciatica: the effects of fragment type and anular competence,” Journal of Bone and Joint Surgery A, vol. 85, no. 1, pp. 102–108, 2003.
[52]  T. Kaner, M. Sasani, T. Oktenoglu, M. Cosar, and A. F. Ozer, “Clinical outcomes after posterior dynamic transpedicular stabilization with limited lumbar discectomy: carragee classification system for lumbar disc herniations,” SAS Journal, vol. 4, no. 3, pp. 92–97, 2010.
[53]  A. H. McKenzie, “The basis for motion preservation surgery: lessons learned from the past,” in Motion Preservation Surgery of the Spine, J. J. Yu, R. Bertagnoli, P. C. McAfee, and H. S. An, Eds., pp. 3–10, Saunders Elsevier Press, Philadelphia, Pa, USA, 2008.
[54]  U. Fernstr?m, “Arthroplasty with intercorporal endoprothesis in herniated disc and in painful disc,” Acta Chirurgica Scandinavica, Supplement, vol. 357, pp. 154–159, 1966.
[55]  H. Reitz and M. J. Joubert, “Replacement of cervical intervertebral disc with a metal prosthesis,” South African Medical Journal, vol. 38, pp. 881–884, 1964.
[56]  A. H. Mc Kenzie, “Steel ball arthroplasty of lumbar discs,” Journal of Bone and Joint Surgery, vol. 54, article 266, 1972.
[57]  K. Büttner-Janz, K. Schellnack, and H. Zippel, “Biomechanics of the SB Charite lumbar intervertebral disc endoprosthesis,” International Orthopaedics, vol. 13, no. 3, pp. 173–176, 1989.
[58]  R. D. Guyer, P. C. McAfee, S. H. Hochschuler et al., “Prospective randomized study of the Charité artificial disc: data from two investigational centers,” Spine Journal, vol. 4, no. 6, pp. 252–259, 2004.
[59]  M. A. Rousseau, D. S. Bradford, R. Bertagnoli, S. S. Hu, and J. C. Lotz, “Disc arthroplasty design influences intervertebral kinematics and facet forces,” Spine Journal, vol. 6, no. 3, pp. 258–266, 2006.
[60]  R. K. Sethi, L. N. Metz, and D. S. Bradford, “History and evolution of motion preservation,” in Motion Preservation Surgery of the Spine, J. J. Yu, R. Bertagnoli, P. C. McAfee, and H. S. An, Eds., pp. 11–20, Saunders Elsevier Press, Philadelphia, Pa, USA, 2008.
[61]  M. Sasani, T. ?kteno?lu, K. Tuncay, N. Canbulat, S. Carilli, and F. A. ?zer, “Total disc replacement in the treatment of lumbar discogenic pain with disc herniation: a prospective clinical study,” Turkish Neurosurgery, vol. 19, no. 2, pp. 127–134, 2009.
[62]  J. C. Le Huec, H. Mathews, Y. Basso et al., “Clinical results of Maverick lumbar total disc replacement: two-year prospective follow-up,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 315–322, 2005.
[63]  K. Büttner-Janz, “Percutaneous application of nucleus replacements,” in Proceedings of the 2nd International Congress, Biotechnologies for Spinal Surgery (BIOSPINE '07), Leipzig, Germany, September 2007.
[64]  K. Büttner-Janz, “Classification of spine arthroplasty devices,” in Motion Preservation Surgery of the Spine, J. J. Yu, R. Bertagnoli, P. C. McAfee, and H. S. An, Eds., pp. 21–35, Saunders Elsevier Press, Philadelphia, Pa, USA, 2008.
[65]  L. Pimenta, PDN at 5 Years Follow-Up, Spine Arthroplasty Society, Montreal, Canada, 2006.
[66]  M. Sasani, A. L. Aydin, T. Oktenoglu et al., “The combined use of a posterior dynamic transpedicular stabilization system and a prosthetic disc nucleus device in treating lumbar degenerative disc disease with disc herniations,” SAS Journal, vol. 2, no. 3, pp. 130–136, 2008.
[67]  A. Gardner and K. C. Pande, “Graf ligamentoplasty: a 7-year follow-up,” European Spine Journal, vol. 11, no. 2, pp. S157–S163, 2002.
[68]  M. Kanayama, T. Hashimoto, and K. Shigenobu, “Rationale, biomechanics, and surgical indications for graf ligamentoplasty,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 373–377, 2005.
[69]  M. Kanayama, T. Hashimoto, K. Shigenobu et al., “Adjacent-segment morbidity after Graf ligamentoplasty compared with posterolateral lumbar fusion,” Journal of Neurosurgery, vol. 95, no. 1, pp. 5–10, 2001.
[70]  A. Onda, K. Otani, S. Konno, and S. Kikuchi, “Mid-term and long-term follow-up data after placement of the Graf stabilization system for lumbar degenerative disorders,” Journal of Neurosurgery: Spine, vol. 5, no. 1, pp. 26–32, 2006.
[71]  M. Kanayama, T. Hashimoto, K. Shigenobu, D. Togawa, and F. Oha, “A minimum 10-year follow-up of posterior dynamic stabilization using graf artificial ligament,” Spine, vol. 32, no. 18, pp. 1992–1996, 2007.
[72]  M. Rigby, G. Selmon, M. Foy, and A. Fogg, “Graf ligament stabilisation: mid- to long-term follow-up,” European Spine Journal, vol. 10, no. 3, pp. 234–236, 2001.
[73]  Z. Askar, D. Wardlaw, T. Muthukumar, F. Smith, D. Kader, and S. Gibson, “Correlation between inter-vertebral disc morphology and the results in patients undergoing Graf ligament stabilisation,” European Spine Journal, vol. 13, no. 8, pp. 714–718, 2004.
[74]  Y. Choi, K. Kim, and K. So, “Adjacent segment instability after treatment with a graf ligament at minimum 8 years' followup,” Clinical Orthopaedics and Related Research, vol. 467, no. 7, pp. 1740–1746, 2009.
[75]  G. Dubois, B. de Germay, N. S. Schaerer, and P. Fennema, “Dynamic neutralization: a new concept for restabilization of the spine,” in Lumbal Segmental Instability, M. Szpalski, R. Gunzburg, and M. H. Pope, Eds., pp. 233–240, Lippincott Williams and Wilkins, Philadelphia, Pa, USA, 1999.
[76]  O. Schwarzenbach, U. Berlemann, T. M. Stoll, and G. Dubois, “Posterior dynamic stabilization systems: DYNESYS,” Orthopedic Clinics of North America, vol. 36, no. 3, pp. 363–372, 2005.
[77]  M. Putzier, S. V. Schneider, J. F. Funk, S. W. Tohtz, and C. Perka, “The surgical treatment of the lumbar disc prolapse: nucleotomy with additional transpedicular dynamic stabilization versus nucleotomy alone,” Spine, vol. 30, no. 5, pp. E109–E114, 2005.
[78]  T. M. Stoll, G. Dubois, and O. Schwarzenbach, “The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system,” European Spine Journal, vol. 11, no. 2, pp. S170–S178, 2002.
[79]  D. Grob, A. Benini, A. Junge, and A. F. Mannion, “Clinical experience with the dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years,” Spine, vol. 30, no. 3, pp. 324–331, 2005.
[80]  A. Kumar, J. Beastall, J. Hughes et al., “Disc changes in the bridged and adjacent segments after Dynesys dynamic stabilization system after two years,” Spine, vol. 33, no. 26, pp. 2909–2914, 2008.
[81]  B. Cakir, C. Carazzo, R. Schmidt, T. Mattes, H. Reichel, and W. K?fer, “Adjacent segment mobility after rigid and semirigid instrumentation of the lumbar spine,” Spine, vol. 34, no. 12, pp. 1287–1291, 2009.
[82]  S. Vaga, M. Brayda-Bruno, F. Perona et al., “Molecular MR imaging for the evaluation of the effect of dynamic stabilization on lumbar intervertebral discs,” European Spine Journal, vol. 18, no. 1, pp. S40–S48, 2009.
[83]  B. Cakir, M. Richter, K. Huch, W. Puhl, and R. Schmidt, “Dynamic stabilization of the lumbar spine,” Orthopedics, vol. 29, no. 8, pp. 716–722, 2006.
[84]  O. Ricart and J. M. Serwier, “Dynamic stabilisation and compression without fusion using Dynesys for the treatment of degenerative lumbar spondylolisthesis: a prospective series of 25 cases,” Revue de Chirurgie Orthopedique et Reparatrice de l'Appareil Moteur, vol. 94, no. 7, pp. 619–627, 2008.
[85]  S. Schaeren, I. Broger, and B. Jeanneret, “Minimum four-year follow-up of spinal stenosis with degenerative spondylolisthesis treated with decompression and dynamic stabilization,” Spine, vol. 33, no. 18, pp. E636–E642, 2008.
[86]  W. Schmoelz, U. Onder, A. Martin, and A. von Strempel, “Non-fusion instrumentation of the lumbar spine with a hinged pedicle screw rod system: an in vitro experiment,” European Spine Journal, vol. 18, no. 10, pp. 1478–1485, 2009.
[87]  A. Strempel, A. Neekritz, P. Muelenaere, et al., “Dynamic versus rigid spinal implants,” in Lumbar Spinal Stenosis, R. Gunzburg and M. Szpalski, Eds., pp. 275–285, Lippincott-Williams and Wilkins, Philadelphia, Pa, USA, 2000.
[88]  H. Bozku?, M. Seno?lu, S. Baek et al., “Dynamic lumbar pedicle screw-rod stabilization: in vitro biomechanical comparison with standard rigid pedicle screw-rod stabilization—laboratory investigation,” Journal of Neurosurgery: Spine, vol. 12, no. 2, pp. 183–189, 2010.
[89]  T. Kaner, M. Sasani, T. Oktenoglu, A. L. Aydin, and A. F. Ozer, “Clinical outcomes of degenerative lumbar spinal stenosis treated with lumbar decompression and the Cosmic "semi-rigid" posterior system,” SAS Journal, vol. 4, no. 4, pp. 99–106, 2010.
[90]  D. Avasthi, Juxtafusional Outcomes with the Dynamic Posterior Lumbar Instrumentation, World Spine III, Rio de Jeneiro, Brasil, 2005.
[91]  L. Zhang, X. Shu, Y. Duan, G. Ye, and A. Jin, “Effectiveness of ISOBAR TTL semi-rigid dynamic stabilization system in treatment of lumbar degenerative disease,” Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, vol. 26, no. 9, pp. 1066–1070, 2012.
[92]  S. N. Sangiorgio, H. Sheikh, S. L. Borkowski, L. Khoo, C. R. Warren, and E. Ebramzadeh, “Comparison of three posterior dynamic stabilization devices,” Spine, vol. 36, no. 19, pp. E1251–E1258, 2011.
[93]  J. D. Coe, S. H. Kitchel, H. J. Meisel, C. H. Wingo, S. E. Lee, and T.-A. Jahng, “NFlex dynamic stabilization system: two-year clinical outcomes of multi-center study,” Journal of Korean Neurosurgical Society, vol. 51, no. 6, pp. 343–349, 2012.
[94]  A. Reyes-Sánchez, B. Zárate-Kalfópulos, I. Ramírez-Mora, L. M. Rosales-Olivarez, A. Alpizar-Aguirre, and G. Sánchez-Bringas, “Posterior dynamic stabilization of the lumbar spine with the Accuflex rod system as a stand-alone device: experience in 20 patients with 2-year follow-up,” European Spine Journal, vol. 19, no. 12, pp. 2164–2170, 2010.
[95]  M. F. Gornet, F. W. Chan, J. C. Coleman et al., “Biomechanical assessment of a PEEK rod system for semi-rigid fixation of lumbar fusion constructs,” Journal of Biomechanical Engineering, vol. 133, no. 8, Article ID 081009, 2011.
[96]  D. R. Ormond, L. Albert Jr., and K. Das, “Polyetheretherketone (PEEK) rods in lumbar spine degenerative disease: a case series,” Journal of Spinal Disorders & Techniques, 2012.
[97]  J. J. Yue, G. Malcolmon, and J. P. Timm, “The stabilimax NZ posterior lumbar dynamic stabilization system,” in Motion Preservation Surgery of the Spine, J. J. Yu, R. Bertagnoli, P. C. McAfee, and H. S. An, Eds., pp. 476–482, Saunders Elsevier Press, Philadelphia, Pa, USA, 2008.
[98]  J. J. Yue, J. P. Timm, M. M. Panjabi, and J. Jaramillo-de la Torre, “Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system,” Neurosurgical focus, vol. 22, no. 1, p. E12, 2007.
[99]  L. T. Khoo, L. Pimenta, and R. Diaz, “TOPS: total posterior facet replacement and dynamic motion segment stabilization system,” in Motion Preservation Surgery of the Spine, J. J. Yu, R. Bertagnoli, P. C. McAfee, and H. S. An, Eds., pp. 551–564, Saunders Elsevier Press, Philadelphia, Pa, USA, 2008.
[100]  J. Sénégas, “Mechanical supplementation by non-rigid fixation in degenerative intervertebral lumbar segments: the wallis system,” European Spine Journal, vol. 11, no. 2, pp. S164–S169, 2002.
[101]  K. M. Shibata and D. H. Kim, “Historical review of Spinal artroplasty and dynamic stabilization,” in Dynamic Reconstruction of the Spine, D. H. Kim, F. P. Cammisa Jr., and R. G. Fessler, Eds., pp. 3–15, Thieme Medical Publishers, New York, NY, USA, 2006.
[102]  S. M. R. Kabir, S. R. Gupta, and A. T. H. Casey, “Lumbar interspinous spacers: a systematic review of clinical and biomechanical evidence,” Spine, vol. 35, no. 25, pp. E1499–E1506, 2010.
[103]  Z. Wan, S. Wang, M. Kozánek et al., “Biomechanical evaluation of the x-stop device for surgical treatment of lumbar spinal stenosis,” Journal of Spinal Disorders & Techniques, vol. 25, no. 7, pp. 374–378, 2012.
[104]  J. F. Zucherman, K. Y. Hsu, C. A. Hartjen et al., “A multicenter, prospective, randomized trial evaluating the X STOP interspinous process decompression system for the treatment of neurogenic intermittent claudication: two-year follow-up results,” Spine, vol. 30, no. 12, pp. 1351–1358, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133