We review the properties of hyperbolic metamaterials and show that they are promising candidates as substrates for nanoimaging, nanosensing, fluorescence engineering, and controlling thermal emission. Hyperbolic metamaterials can support unique bulk modes, tunable surface plasmon polaritons, and surface hyperbolic states (Dyakonov plasmons) that can be used for a variety of applications. We compare the effective medium predictions with practical realizations of hyperbolic metamaterials to show their potential for radiative decay engineering, bioimaging, subsurface sensing, metaplasmonics, and super-Planckian thermal emission. 1. Introduction Metamaterial technologies have matured over the past decade for a variety of applications such as superresolution imaging [1, 2], cloaking [3], and perfect absorption [4]. Various classes of metamaterials have emerged that show exotic electromagnetic properties like negative index [5], optical magnetism [6], giant chirality [7–9], epsilon-near-zero [10], bianisotropy [11], and spatial dispersion [12] among many others. The central guiding principle in all the metamaterials consists of fabricating a medium composed of unit cells far below the size of the wavelength. The unique resonances of the unit cell based on its structure and material composition as well as coupling between the cells lead to a designed macroscopic electromagnetic response. One class of artificial media which received a lot of attention are hyperbolic metamaterials [13–15]. They derive their name from the unique form of the isofrequency curve which is hyperbolic instead of circular as in conventional dielectrics. The reason for their widespread interest is due to the relative ease of nanofabrication, broadband nonresonant response, wavelength tunability, bulk three-dimensional response, and high figure of merit [16]. Hyperbolic metamaterials (HMMs) can be used for a variety of applications from negative index waveguides [13] and subdiffraction photonic funnels [17] to nanoscale resonators [18]. In the visible and near-infrared wavelength regions, HMMs are the most promising artificial media for practical applications [19]. In this paper, we describe the potential of hyperbolic metamaterial substrates for five distinct applications: fluorescence engineering [20–22], nanoimaging [23–25], subsurface sensing [26], dyakonov plasmons [27, 28], and super-Planckian thermal emission [29, 30]. Our work presents a unified view for these distinct applications and elucidates many key design principles useful to experimentalists and theorists. We focus on the
References
[1]
J. B. Pendry, “Negative refraction makes a perfect lens,” Physical Review Letters, vol. 85, no. 18, pp. 3966–3969, 2000.
[2]
N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science, vol. 308, no. 5721, pp. 534–537, 2005.
[3]
J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science, vol. 312, no. 5781, pp. 1780–1782, 2006.
[4]
N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Physical Review Letters, vol. 100, no. 20, Article ID 207402, 2008.
[5]
W. Cai and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Springer, 2009.
[6]
W. Cai, U. K. Chettiar, H. K. Yuan et al., “Metamagnetics with rainbow colors,” Optics Express, vol. 15, no. 6, pp. 3333–3341, 2007.
[7]
N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nature Photonics, vol. 3, no. 3, pp. 157–162, 2009.
[8]
E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Physical Review Letters, vol. 102, no. 11, Article ID 113902, 2009.
[9]
E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Applied Physics Letters, vol. 90, no. 22, Article ID 223113, 2007.
[10]
A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern,” Physical Review B, vol. 75, no. 15, Article ID 155410, 2007.
[11]
X. Chen, B. I. Wu, J. A. Kong, and T. M. Grzegorczyk, “Retrieval of the effective constitutive parameters of bianisotropic metamaterials,” Physical Review E, vol. 71, Article ID 046610, 2005.
[12]
J. Elser, V. A. Podolskiy, I. Salakhutdinov, and I. Avrutsky, “Nonlocal effects in effective-medium response of nanolayered metamaterials,” Applied Physics Letters, vol. 90, no. 19, Article ID 191109, 2007.
[13]
V. A. Podolskiy and E. E. Narimanov, “Strongly anisotropic waveguide as a nonmagnetic left-handed system,” Physical Review B, vol. 71, no. 20, pp. 1–4, 2005.
[14]
D. R. Smith, P. Kolinko, and D. Schurig, “Negative refraction in indefinite media,” Journal of the Optical Society of America B, vol. 21, no. 5, pp. 1032–1043, 2004.
[15]
P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Physical Review B, vol. 73, no. 11, Article ID 113110, 4 pages, 2006.
[16]
A. J. Hoffman, L. Alekseyev, S. S. Howard et al., “Negative refraction in semiconductor metamaterials,” Nature Materials, vol. 6, no. 12, pp. 946–950, 2007.
[17]
A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Physical Review B, vol. 73, no. 15, Article ID 155108, pp. 1–5, 2006.
[18]
J. Yao, X. Yang, X. Yin, G. Bartal, and X. Zhang, “Three-dimensional nanometer-scale optical cavities of indefinite medium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 28, pp. 11327–11331, 2011.
[19]
C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” Journal of Optics, vol. 14, no. 6, Article ID 063001, 2012.
[20]
Z. Jacob, I. I. Smolyaninov, and E. E. Narimanov, “Broadband purcell effect: radiative decay engineering with metamaterials,” Applied Physics Letters, vol. 100, Article ID 181105, 4 pages, 2012.
[21]
Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, and V. Shalaev, “Engineering photonic density of states using metamaterials,” Applied Physics B, vol. 100, no. 1, pp. 215–218, 2010.
[22]
J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Analytical Biochemistry, vol. 324, no. 2, pp. 153–169, 2004.
[23]
Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Optics Express, vol. 14, no. 18, pp. 8247–8256, 2006.
[24]
Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science, vol. 315, no. 5819, p. 1686, 2007.
[25]
A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations,” Physical Review B, vol. 74, no. 7, Article ID 075103, 2006.
[26]
T. Taubner, D. Korobkin, Y. Urzhumov, G. Shvets, and R. Hillenbrand, “Near-field microscopy through a SiC superlens,” Science, vol. 313, no. 5793, p. 1595, 2006.
[27]
D. Artigas and L. Torner, “Dyakonov surface waves in photonic metamaterials,” Physical Review Letters, vol. 94, no. 1, Article ID 013901, 2005.
[28]
Z. Jacob and E. E. Narimanov, “Optical hyperspace for plasmons: dyakonov states in metamaterials,” Applied Physics Letters, vol. 93, no. 22, Article ID 221109, 2008.
[29]
A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Physical Review Letters, vol. 85, no. 7, pp. 1548–1551, 2000.
[30]
Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Applied Physics Letters, vol. 101, no. 13, Article ID 131106, 5 pages, 2012.
[31]
Z. Jacob, Classical and quantum optics of hyperbolic metamaterials [Ph.D dissertation], Purdue University, 2010.
[32]
E. E. Narimanov and I. I. Smolyaninov, “Beyond stefan-boltzmann law: thermal hyper-conductivity,” http://arxiv.org/abs/1109.5444.
[33]
I. I. Smolyaninov and E. E. Narimanov, “Metric signature transitions in optical metamaterials,” Physical Review Letters, vol. 105, no. 6, Article ID 067402, 2010.
[34]
M. A. Noginov, H. Li, Y. A. Barnakov et al., “Controlling spontaneous emission with metamaterials,” Optics Letters, vol. 35, no. 11, pp. 1863–1865, 2010.
[35]
O. Kidwai, S. V. Zhukovsky, and J. E. Sipe, “Dipole radiation near hyperbolic metamaterials: applicability of effective-medium approximation,” Optics Letters, vol. 36, no. 13, pp. 2530–2532, 2011.
[36]
A. N. Poddubny, P. A. Belov, and Y. S. Kivshar, “Spontaneous radiation of a finite-size dipole emitter in hyperbolic media,” Physical Review A, vol. 84, no. 2, Article ID 023807, 6 pages, 2011.
[37]
M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Applied Physics Letters, vol. 94, no. 15, Article ID 151105, 2009.
[38]
P. A. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Physical Review B, vol. 71, no. 19, 2005.
[39]
W. Dickson, G. A. Wurtz, P. Evans et al., “Dielectric-loaded plasmonic nanoantenna arrays: a metamaterial with tuneable optical properties,” Physical Review B, vol. 76, no. 11, Article ID 115411, 2007.
[40]
J. Yao, Z. Liu, Y. Liu et al., “Optical negative refraction in bulk metamaterials of nanowires,” Science, vol. 321, no. 5891, p. 930, 2008.
[41]
Y. Xiong, Z. Liu, C. Sun, and X. Zhang, “Two-dimensional imaging by far-field superlens at visible wavelengths,” Nano Letters, vol. 7, no. 11, pp. 3360–3365, 2007.
[42]
G. V. Naik, J. Kim, and A. Boltasseva, “Oxides and nitrides as alternative plasmonic materials in the optical range,” Optical Materials Express, vol. 1, no. 6, pp. 1090–1099, 2011.
[43]
D. Korobkin, B. Neuner III, C. Fietz, N. Jegenyes, G. Ferro, and G. Shvets, “Measurements of the negative refractive index of sub-diffraction waves propagating in an indefinite permittivity medium,” Optics Express, vol. 18, no. 22, pp. 22734–22746, 2010.
[44]
H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science, vol. 336, no. 6078, pp. 205–209, 2012.
[45]
I. Iorsh, A. Poddubny, A. Orlov, P. Belov, and Y. Kivshar, “Spontaneous emission enhancement in metal-dielectric metamaterials,” Physics Letters A, vol. 376, pp. 185–187, 2012.
[46]
S. A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J. J. Greffet, “Nanoscale heat flux between nanoporous materials,” Optics Express, vol. 19, no. S5, pp. A1088–A1103, 2011.
[47]
S. A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Physical Review Letters, vol. 109, no. 10, Article ID 104301, 5 pages, 2012.
[48]
L. B. Felsen and N. Marcuvitz, Radiation and Scattering of Waves, Wiley-IEEE Press, 1994.
[49]
Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Semiclassical theory of the hyperlens,” Journal of the Optical Society of America A, vol. 24, no. 10, pp. A52–A59, 2007.
[50]
I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science, vol. 315, no. 5819, pp. 1699–1701, 2007.
[51]
Z. Jacob and V. M. Shalaev, “Plasmonics goes quantum,” Science, vol. 334, no. 6055, pp. 463–464, 2011.
[52]
Z. Jacob, “Quantum plasmonics,” MRS Bulletin, vol. 37, no. 8, pp. 761–767, 2012.