We explored the dynamics of the temperature of the skin layer of the Dead Sea surface by means of in situ meteorological and hydrographic measurements from a buoy located near the center of the lake. The skin temperature is most highly correlated to air temperature (0.93–0.98) in all seasons. The skin temperature is much less correlated to the bulk surface water temperature in the summer (0.80), when the lake is thermally stratified, and uncorrelated in the winter, when the Dead Sea is vertically mixed. Low correlations were found between the skin temperature and the solar radiation and wind speed in all seasons. The skin, with its low thermal inertia, responds immediately to the atmospheric forcing. Heat fluxes across the sea surface are also presented. The high correlation of skin temperature to air temperature with minimal time lag is a result of the nearly immediate response of the thin skin layer to the surface heat fluxes, primarily the sensible heat flux. 1. Introduction Sea surface temperature (SST) is a critically important parameter in the study of ocean-atmosphere interactions. SST has a major role in atmospheric models, weather forecasting, climate change models, and energy balance calculations. SST can be measured from satellites and represents a very thin boundary layer (~10?μm skin layer) between the turbulent ocean and atmospheric layers. At this boundary layer, exchanges of sensible and latent heat occur, and long-wave radiation is emitted and absorbed [1]. Different processes act on the skin layer and on the water body beneath it (bulk layer), resulting in a difference between the skin and bulk temperatures. Saunders [2] presented a simple theory in which the difference between bulk temperature and skin temperature, commonly termed “the skin effect” ( ), is proportional to the heat flux (including sensible, latent, and long wave radiative heat fluxes from ocean to atmosphere) and inversely proportional to the kinematic stress (wind friction); the theory is limited to conditions of negligibly low solar radiation and excludes very low wind intensity. One of the predictions of this model is that the ocean is usually covered with a “cool skin”. The skin effect is estimated using measured in situ bulk temperature and long wave radiation from which the skin temperature is calculated [3]. The effects of wind, waves, and the upper layer mixing on the boundary layer have been investigated [3–5]. These studies have shown that wind mixes the upper layer, cooling the skin layer, and that breaking waves momentarily destroy the skin layer, which
References
[1]
W. J. Emery, S. Castro, G. A. Wick, P. Schluessel, and C. Donlon, “Estimating sea surface temperature from infrared satellite and in situ temperature data,” Bulletin of the American Meteorological Society, vol. 82, no. 12, pp. 2773–2785, 2001.
[2]
P. M. Saunders, “The temperature at the ocean-air interface,” Journal of the Atmospheric Sciences, vol. 24, pp. 269–273, 2011.
[3]
C. J. Donlon, P. J. Minnett, C. Gentemann et al., “Toward improved validation of satellite sea surface skin temperature measurements for climate research,” Journal of Climate, vol. 15, no. 4, pp. 353–369, 2002.
[4]
D. C. Oesch, J.-M. Jaquet, A. Hauser, and S. Wunderle, “Lake surface water temperature retrieval using advanced very high resolution radiometer and Moderate Resolution Imaging Spectroradiometer data: validation and feasibility study,” Journal of Geophysical Research C, vol. 110, no. 12, Article ID C12014, 17 pages, 2005.
[5]
C. J. Merchant, M. J. Filipiak, P. Le Borgne et al., “Diurnal warm-layer events in the western Mediterranean and European shelf seas,” Geophysical Research Letters, vol. 35, no. 4, Article ID L04601, 2008.
[6]
A. T. Jessup, C. J. Zappa, M. R. Loewen, and V. Hesany, “Infrared remote sensing of breaking waves,” Nature, vol. 385, no. 6611, pp. 52–55, 1997.
[7]
C. J. Merchant, L. A. Horrocks, J. R. Eyre, and A. G. O'Carroll, “Retrievals of sea surface temperature from infrared imagery: origin and form of systematic errors,” Quarterly Journal of the Royal Meteorological Society, vol. 132, no. 617, pp. 1205–1223, 2006.
[8]
C. J. Merchant, P. Le Borgne, A. Marsouin, and H. Roquet, “Optimal estimation of sea surface temperature from split-window observations,” Remote Sensing of Environment, vol. 112, no. 5, pp. 2469–2484, 2008.
[9]
S. L. Castro, G. A. Wick, P. J. Minnett, A. T. Jessup, and W. J. Emery, “The impact of measurement uncertainty and spatial variability on the accuracy of skin and subsurface regression-based sea surface temperature algorithms,” Remote Sensing of Environment, vol. 114, no. 11, pp. 2666–2678, 2010.
[10]
A. T. Jessup and R. Brance, “Integrated ocean skin and bulk temperature measurements using the Calibrated Infrared in Situ Measurement System (CIRIMS) and through-hull ports,” Journal of Atmospheric and Oceanic Technology, vol. 25, no. 4, pp. 579–597, 2011.
[11]
E. J. Noyes, P. J. Minnett, J. J. Remedios, G. K. Corlett, S. A. Good, and D. T. Llewellyn-Jones, “The accuracy of the AATSR sea surface temperatures in the Caribbean,” Remote Sensing of Environment, vol. 101, no. 1, pp. 38–51, 2006.
[12]
N. G. Lensky, Y. Dvorkin, V. Lyakhovsky, I. Gertman, and I. Gavrieli, “Water, salt, and energy balances of the Dead Sea,” Water Resources Research, vol. 41, no. 12, Article ID W12418, 13 pages, 2005.
[13]
R. Nehorai, I. M. Lensky, N. G. Lensky, and S. Shiff, “Remote sensing of the Dead Sea surface temperature,” Journal of Geophysical Research C, vol. 114, no. 5, Article ID C05021, 2009.
[14]
T. E. Steissberg, S. J. Hook, and S. G. Schladow, “Characterizing partial upwellings and surface circulation at Lake Tahoe, California-Nevada, USA with thermal infrared images,” Remote Sensing of Environment, vol. 99, no. 1-2, pp. 2–15, 2005.
[15]
I. Gavrieli, N. G. Lensky, M. Abelson et al., “Red Sea to Dead Sea Water Conveyance (RSDSC) study: Dead Sea research team,” Tech. Rep. GSI/10/2011, Tahal Group and Geological Survey of Israel, Jerusalem, Israel, 2011.
[16]
I. Gertman and A. Hecht, “The Dead Sea hydrography from 1992 to 2000,” Journal of Marine Systems, vol. 35, no. 3-4, pp. 169–181, 2002.
[17]
Z. Sirkes, “Surface manifestations of internal oscillations in a highly stratified saline lake (the Dead Sea),” Limnology and Oceanography, vol. 32, pp. 76–82, 1987.
[18]
N. G. Lensky, I. Gertman, Z. Rosentraub et al., “Alternative dumping sites in the Dead Sea for harvested salt from pond 5,” Tech. Rep. GSI/05/2010, Geological Survey of Israel, Jerusalem, Israel, 2010.
[19]
D. Neev and K. O. Emery, “The Dead Sea: depositional processes and environments of evaporates,” Geological Survey of Israel Bulletin 41, 147 pp., 1967.
[20]
K. O. Emery and G. T. Csanady, “Surface circulation of lakes and nearly land-locked seas,” Proceedings of the National Academy of Sciences of the United States of America, vol. 70, no. 1, pp. 93–97, 1973.
[21]
A. Hecht and I. Gertman, “Fungal life in the Dead Sea,” Mycological Research, vol. 108, pp. 1106–1106, 2004.
[22]
I. J. Barton, “Interpretation of satellite-derived sea surface temperatures,” Advances in Space Research, vol. 28, no. 1, pp. 165–170, 2001.