This paper investigates the capability of a regional climate model (RegCM3) to simulate the Southern Brazil rainfall during three periods: the El Ni?o (1982), the neutral intermediary phase (1985), and the La Ni?a (1988). Each integration has used three of different boundary conditions available: NCEP-NCAR Reanalysis (I and II) and ECMWF Reanalysis—ERA-40. The simulations were performed covering a South America domain and some descriptive statistics analyses have been applied, like arithmetic mean, median, standard deviation and Pearson’s correlation; and frequencies histogram over Southern Brazil. The main results show that the model satisfactorily reproduces the rainfall in this region during the El Ni?o, neutral, and La Ni?a events, indicating that the boundary conditions which were tested adequately describe this simulations type. 1. Introduction In Southern Brazil, the Rio Grande do Sul (RS) state has uniform precipitation during the year, with accumulated values around 1800?mm/year [1]. The climate in this region is affected by many meteorological phenomena, for example, cold fronts [2, 3], mesoscale convective systems [4], or El Ni?o phenomenon [5, 6]. The regional climate model—version 3 (RegCM3) model (see more details in [7])—has been used to solve high-resolution local circulation by dynamic downscaling. The information is consistent with the large-scale circulation supplied by the driving GCMs or by reanalysis data at the boundaries [8]. Regional climate models (RCMs) have been used for a wide variety of studies of the present-day climate and possible future climates over a number of regions throughout the world. In the CLARIS-LPB project, the capability of a set of 7 coordinated regional climate models in reproducing the mean climate conditions over the South American continent was evaluated. Results show that the RCMs ensemble adequately reproduces these features, with biases mostly within ±2°C and ±20% for temperature and precipitation, respectively. However, some systematic biases were detected over the La Plata Basin region, such as underestimation of rainfall during winter months and overestimation of temperature during summer months [9]. The dry bias during winter in the Southeast of South America has also been observed in [10]. A RegCM3 was able to simulate the dramatically different large-scale circulations during La Ni?a and El Ni?o events in Amazon basin. The regional model showed reduction of rainfall in the western Amazon when compared to the observed estimates. This precipitation is associated to weak low-level moisture
References
[1]
A. M. Ramos, L. A. Rodrigues, and L. T. G. Fortes, Normais Climatológicas Do Brasil 1961–1990, Instituto Nacional de Meteorologia, Brasília, Brazil.
[2]
J. J. Taljaard, “Topics: synoptic meteorology in Southern Hemisphere,” Meteorological Monographs, vol. 13, no. 35, pp. 129–213, 1972.
[3]
I. F. A. Cavalcanti and V. E. Kousky, “Climatology of South America cold fronts,” in Proceedings of the International Conference on Southern Hemisphere Meteorology and Oceanography, Wellington, New Zealand, March 2003.
[4]
I. Velasco and J. M. Fritsch, “Mesoscale convective complexes in the Americas,” Journal of Geophysical Research, vol. 92, no. 8, pp. 9591–9613, 1987.
[5]
C. F. Ropelewski and M. S. Halpert, “Global and regional scale precipitation patterns associated with the El Ni?o/Southern Oscillation,” Monthly Weather Review, vol. 115, pp. 1606–1626, 1987.
[6]
A. M. Grimm, S. E. T. Ferraz, and J. Gomes, “Precipitation anomalies in southern Brazil associated with El Nino and La Nina events,” Journal of Climate, vol. 11, no. 11, pp. 2863–2880, 1998.
[7]
J. S. Pal, F. Giorgi, X. Bi et al., “Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET,” Bulletin of the American Meteorological Society, vol. 88, no. 9, pp. 1395–1409, 2007.
[8]
P. Zanis, C. Douvis, I. Kapsomenakis, I. Kioutsioukis, D. Melas, and J. S. Pal, “A sensitivity study of the regional climate model (RegCM3) to the convective scheme with emphasis in central eastern and southeastern Europe,” Theoretical and Applied Climatology, vol. 97, no. 3-4, pp. 327–337, 2009.
[9]
S. A. Solman, E. Sanchez, P. Samuelsson, et al., “Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties,” Climate Dynamics, 2013.
[10]
A. Seth, S. A. Rauscher, S. J. Camargo, J. Qian, and J. S. Pal, “RegCM3 regional climatologies for South America using reanalysis and ECHAM global model driving fields,” Climate Dynamics, vol. 28, no. 5, pp. 461–480, 2007.
[11]
A. Seth and M. Rojas, “Simulation and sensitivity in nested modeling system for South America, part I: reanalysis boundary forcing,” Journal of Climate, vol. 16, pp. 2437–2453, 2003.
[12]
J. P. R. Fernandez, S. H. Franchito, and V. B. Rao, “Simulation of the summer circulation over South America by two regional climate models, part II: a comparison between 1997/1998 El Ni?o and 1998/1999 La Ni?a events,” Theoretical and Applied Climatology, vol. 86, no. 1–4, pp. 261–270, 2006.
[13]
A. M. Grimm and M. T. Zilli, “Interannual variability and seasonal evolution of summer monsoon rainfall in South America,” Journal of Climate, vol. 22, no. 9, pp. 2257–2275, 2009.
[14]
R. A. Anthes, E. Hsie, Y. Kuo, et al., “Description of the Penn State/NCAR Mesoscale Model Version 4 (MM4),” NCAR Technical Notes NCAR/TN-282+STR, NCAR, Boulder, Colo, USA, 1987.
[15]
R. A. Anthes, “A cumulus parameterization scheme utilizing a one-dimensional cloud model,” Monthly Weather Review, vol. 105, pp. 270–286, 1977.
[16]
G. A. Grell, “Prognostic evaluation of assumptions used by cumulus parameterizations,” Monthly Weather Review, vol. 121, no. 3, pp. 764–787, 1993.
[17]
K. A. Emanuel, “A scheme for representing cumulus convection in large-scale models,” Journal of the Atmospheric Sciences, vol. 48, no. 21, pp. 2313–2335, 1991.
[18]
K. A. Emanuel and M. ?ivkovi?-Rothman, “Development and evaluation of a convection scheme for use in climate models,” Journal of the Atmospheric Sciences, vol. 56, no. 11, pp. 1766–1782, 1999.
[19]
A. Arakawa and W. H. Schubert, “Interaction of a cumulus cloud ensemble with the largescale environment, part I,” Journal of the Atmospheric Science, vol. 31, pp. 674–701, 1974.
[20]
E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996.
[21]
M. Kanamitsu, W. Ebisuzaki, J. Woollen et al., “NCEP-DOE AMIP-II reanalysis (R-2),” Bulletin of the American Meteorological Society, vol. 83, no. 11, pp. 1631–1643, 2002.
[22]
S. M. Uppala, P. W. Kallberg, A. J. Simmons, et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 2961–3012, 2005.
[23]
N. A. Rayner, D. E. Parker, E. B. Horton et al., “Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century,” Journal of Geophysical Research D, vol. 108, no. 14, pp. 1–29, 2003.
[24]
D. E. Parker, M. Jackson, and E. B. Horton, “The Gisst2. 2 sea surface temperature and sea-ice climatology,” Climate Research Technical Note Crtn63, Hadley Centre, Meteorological Office, Bracknell, UK, 1995.
[25]
N. A. Rayner, N. A. Horton, E. B. Parker, et al., “Version 2. 2 of the global sea-ice and sea surface temperature data set, 1903–1994,” Climate Research Technical Note Crtn74, Hadley Centre, Meteorological Office, Bracknell, UK, 1996.
[26]
T. R. Loveland, B. C. Reed, J. F. Brown et al., “Development of a global land cover characteristics database and IGBP DISCover from 1-km AVHRR data,” International Journal of Remote Sensing, vol. 21, no. 6-7, pp. 1303–1330, 2000.
[27]
F. Giorgi and L. O. Mearns, “Approaches to the simulation of regional climate change: a review,” Reviews of Geophysics, vol. 29, no. 2, pp. 191–216, 1991.
[28]
F. Giorgi and L. O. Mearns, “Introduction to special section: regional climate modeling revisited,” Journal Geophysics Research, vol. 104, pp. 6335–6352, 1999.
[29]
F. Giorgi, B. Hewitson, H. Christensen, et al., “Regional climate information—evaluation and projections,” IPCC 3rd Assessment Report—Climate Change chapter 10, IPCC, London, UK, 2001.
[30]
B. Liebmann and D. Allured, “Daily precipitation grids for South America,” Bulletin of the American Meteorological Society, vol. 86, no. 11, pp. 1567–1570, 2005.
[31]
B. Doty, “The grid analysis and display system,” Manual, vol. 1. 5. 1. 12., 1995.
[32]
D. S. Wilks, Statistical Methods in the Atmospheric Sciences, Academic Press, New York, NY, USA, 1995.
[33]
E. A. Afiesimama, J. S. Pal, B. J. Abiodun, W. J. Gutowski Jr., and A. Adedoyin, “Simulation of West African monsoon using the RegCM3, part I: model validation and interannual variability,” Theoretical and Applied Climatology, vol. 86, no. 1–4, pp. 23–37, 2006.
[34]
D. Martínez-Castro, R. da Rocha, A. Bezanilla-Morlot et al., “Sensitivity studies of the RegCM3 simulation of summer precipitation, temperature and local wind field in the Caribbean Region,” Theoretical and Applied Climatology, vol. 86, no. 1–4, pp. 5–22, 2006.