An agroecological zone (AEZ) is a land resource mapping unit, defined in terms of climate, landform, and soils, and has a specific range of potentials and constraints for cropping (FAO, 1996). The shifting patterns of AEZs in China driven by future climatic changes were assessed by applying the agroecological zoning methodology proposed by International Institute for Applied Systems Analysis (IIASA) and Food and Agriculture Organization of the United Nations (FAO) in this study. A data processing scheme was proposed in this study to reduce systematic errors in projected climate data using observed data from meteorological stations. AEZs in China of each of the four periods: 2011–2020, 2021–2030, 2031–2040, and 2041–2050 were drawn. It is found that the future climate change will lead to significant local changes of AEZs in China and the overall pattern of AEZs in China is stable. The shifting patterns of AEZs will be characterized by northward expansion of humid AEZs to subhumid AEZs in south China, eastward expansion of arid AEZs to dry and moist semiarid AEZs in north China, and southward expansion of dry semiarid AEZs to arid AEZs in southwest China. 1. Introduction The world is facing a crisis in terms of food security [1, 2]. The challenge is from not only the growing global population but also the sustainability of nutritious food supply. In order to meet global demands, food production should increase 60–70% by 2050 compared with that at the beginning of the 21th century [3]. Climate change is now widely recognized as one of the most critical influences on sustainability of food supply. It changes the suitability of crop and investment structure in agriculture. Researchers have confirmed that the crop suitability shifts in the context of climate change [4–7]. Lane and Jarvis [8] predicted the impact of climate change with current and projected future climate data and found that the suitable area of main food crops including rice, wheat, potato, and some cash crops such as apple, banana, coffee, and strawberry would reduce along with climate change. According to the evaluation of Easterling et al. [9], even in the scenario of Intergovernmental Panel on Climate Change (IPCC) low emissions (B1, with a 2°C rise in global mean temperatures by 2100) the current farming systems will be destabilized. If the increasing suffering from chronic hunger is frustrating today, the further difficulties, risks, and challenges for achieving food security will make people desperate, especially for those in South Asia and sub-Saharan Africa [10, 11]. China, which
References
[1]
M. W. Rosegrant and S. A. Cline, “Global food security: challenges and policies,” Science, vol. 302, no. 5652, pp. 1917–1919, 2003.
[2]
H. C. J. Godfray, J. R. Beddington, I. R. Crute et al., “Food security: the challenge of feeding 9 billion people,” Science, vol. 327, no. 5967, pp. 812–818, 2010.
[3]
N. Alexandratos, World Agriculture: Towards 2030/2050, Interim Report, Food and Agriculture Organization of the United Nations, Rome, Italy, 2006.
[4]
J. Ramirez-Villegas, A. Jarvis, and P. L?derach, “Empirical approaches for assessing impacts of climate change on agriculture: the EcoCrop model and a case study with grain sorghum,” Agricultural and Forest Meteorology, vol. 170, pp. 67–78, 2013.
[5]
P. M. S. Jayathilaka, P. Soni, S. R. Perret, H. P. W. Jayasuriya, and V. M. Salokhe, “Spatial assessment of climate change effects on crop suitability for major plantation crops in Sri Lanka,” Regional Environmental Change, vol. 12, no. 1, pp. 55–68, 2012.
[6]
G. Fischer, M. Shah, F. N. Tubiello, and H. van Velhuizen, “Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080,” Philosophical Transactions of the Royal Society B, vol. 360, no. 1463, pp. 2067–2083, 2005.
[7]
N. Y. Krakauer, “Estimating climate trends: application to United States plant hardiness zones,” Advances in Meteorology, vol. 2012, Article ID 404876, 9 pages, 2012.
[8]
A. Lane and A. Jarvis, “Changes in climate will modify the geography of crop suitability: agricultural biodiversity can help with adaptation,” Journal of Semi-Arid Tropical Agricultural Research, vol. 4, no. 1, pp. 1–12, 2007.
[9]
W. E. Easterling, P. K. Aggarwal, P. Batima et al., “Food, fibre and forest products,” in Climate Change 2007: Impacts, Adaptation and Vulnerability, Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. vander Linden, and C. E. Hanson, Eds., pp. 273–313, Cambridge University Press, Cambridge, UK, 2007.
[10]
FAO, The State of Food Security in the World, Food and Agriculture Organization of the United Nations, Rome, Italy, 2009.
[11]
H. C. J. Godfray, J. R. Beddington, I. R. Crute et al., “Food security: the challenge of feeding 9 billion people,” Science, vol. 327, no. 5967, pp. 812–818, 2010.
[12]
S. Fan and J. Brzeska, 2010: The Role of Emerging Countries in Global Food Security, vol. 15 of Policy Brief, International Food Policy Research Institute, Washington, DC, USA, 2010.
[13]
UNDP, Human Development Report 2013-The Rise of the South: Human Progress in a Diverse World, United Nations Development Programme, New York, NY, USA, 2013.
[14]
J. K. Huang and S. Rozelle, “Agricultural development, nutrition and the policies behind China's success,” Asian Journal of Agriculture and Development, vol. 7, no. 1, pp. 93–126, 2010.
[15]
X. Z. Deng, J. K. Huang, F. B. Qiao et al., “Impacts of El Nino-Southern Oscillation (ENSO) events on China's rice production,” Journal of Geographical Sciences, vol. 20, no. 1, pp. 3–16, 2010.
[16]
W. B. Wu, H. J. Tang, P. Yang, Q. B. Zhou, Z. X. Chen, and R. Shibasaki, “Model-based assessment of food security at a global scale,” Acta Geographica Sinica, vol. 65, no. 8, pp. 907–918, 2010.
[17]
J. W. Dong, J. Y. Liu, F. L. Tao, X. L. Xu, and J. B. Wang, “Spatio-temporal changes in annual accumulated temperature in China and the effects on cropping systems, 1980s to 2000,” Climate Research, vol. 40, no. 1, pp. 37–48, 2009.
[18]
D. Guo, Y. Q. Gao, I. Bethke, D. Y. Gong, O. M. Johannessen, and H. J. Wang, “Mechanism on How the spring Arctic sea ice impacts the East Asian summer monsoon,” Theoretical and Applied Climatology, 2013.
[19]
FAO, Agro-Ecological Zoning Guidelines, vol. 73 of FAO Soils Bulletin, Food and Agriculture Organization of the United Nations, Rome, Italy, 1996.
[20]
M. J. Salinger, M. V. K. Sivakumar, and R. Motha, “Reducing vulnerability of agriculture and forestry to climate variability and change: workshop summary and recommendations,” Climatic Change, vol. 70, no. 1-2, pp. 341–362, 2005.
[21]
P. Espie, G. Griffiths, M. Jessen et al., “Climate for crops: integrating climate data with information about soils and crop requirements to reduce risks in agricultural decision-making,” Meteorological Applications, vol. 13, no. 4, pp. 305–315, 2006.
[22]
M. K. Cao, S. J. Ma, and C. R. Han, “Potential productivity and human carrying capacity of an agro-ecosystem: an analysis of food production potential of China,” Agricultural Systems, vol. 47, no. 4, pp. 387–414, 1995.
[23]
G. Fischer and L. X. Sun, “Model based analysis of future land-use development in China,” Agriculture, Ecosystems and Environment, vol. 85, no. 1–3, pp. 163–176, 2001.
[24]
C. Devendra and D. Thomas, “Crop-animal systems in Asia: importance of livestock and characterisation of agro-ecological zones,” Agricultural Systems, vol. 71, no. 1-2, pp. 5–15, 2002.
[25]
X. Z. Deng, J. K. Huang, S. Rozelle, and E. Uchida, “Cultivated land conversion and potential agricultural productivity in China,” Land Use Policy, vol. 23, no. 4, pp. 372–384, 2006.
[26]
X. Wang, Z. Y. Li, W. Q. Ma, and F. S. Zhang, “Effects of fertilization on yield increase of wheat in different agro-ecological regions of China,” Scientia Agricultura Sinica, vol. 43, no. 12, pp. 2469–2476, 2010.
[27]
Y. Q. Yu, Y. Huang, and W. Zhang, “Changes in rice yields in China since 1980 associated with cultivar improvement, climate and crop management,” Field Crops Research, vol. 136, pp. 65–75, 2012.
[28]
B. M. Chen, The Integrated Agricultural Resources Production Capability and Population Supporting Capacity in China, Meteorological Press, Beijing, China, 2001.
[29]
Z.-Q. Jin and D.-W. Zhu, “Impacts of changes in climate and its variability on food production in Northeast China,” Acta Agronomica Sinica, vol. 34, no. 9, pp. 1588–1597, 2008.
[30]
Y. Z. Yang, Z. M. Feng, H. Q. Huang, and Y. Lin, “Climate-induced changes in crop water balance during 1960–2001 in Northwest China,” Agriculture, Ecosystems and Environment, vol. 127, no. 1-2, pp. 107–118, 2008.
[31]
Z. H. He, Z. J. Lin, L. J. Wang, Z. R. Xiao, F. S. Wan, and Q. S. Zhuang, “Classification on Chinese wheat regions based on quality,” Scientia Agricultura Sinica, vol. 35, no. 4, pp. 359–364, 2002.
[32]
L. G. Kong, J. S. Si, B. Zhang, B. Feng, S. D. Li, and F. H. Wang, “Environmental modification of wheat grain protein accumulation and associated processing quality: a case study of China,” Australian Journal of Crop Science, vol. 7, no. 2, pp. 173–181, 2013.
[33]
S. J. Jia, S. Q. Han, and H. J. Wang, “The research on the pattern of precipitation in Hebei agricultural regions,” Advanced Materials Research, vol. 518–523, pp. 4062–4067, 2012.
[34]
E. Stehfest, M. Heistermann, J. A. Priess, D. S. Ojima, and J. Alcamo, “Simulation of global crop production with the ecosystem model DayCent,” Ecological Modelling, vol. 209, no. 2–4, pp. 203–219, 2009.
[35]
H. L. Lee, T. W. Hertel, B. Sohngen, and N. Ramankutty, “Towards and Integrated Land Use Data Base for Assessing the Potential for greenho Use Gas Mitigation, GTAP (Global Trade Analysis Project),” Tech. Rep. 25, Center for Global Trade Analysis, Purdue University, 2005.
[36]
J. Atehnkeng, P. S. Ojiambo, M. Donner et al., “Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria,” International Journal of Food Microbiology, vol. 122, no. 1-2, pp. 74–84, 2008.
[37]
M. Palm, M. Ostwald, I. K. Murthy, R. K. Chaturvedi, and N. H. Ravindranath, “Barriers to plantation activities in different agro-ecological zones of Southern India,” Regional Environmental Change, vol. 11, no. 2, pp. 423–435, 2011.
[38]
International Institute for Applied Systems Analysis and Food Agriculture Organization of the United Nations, Global Agro-Ecological Zones (GAEZ V3. 0), 2012, IIASA, Laxenburg, Austria and FAO, Rome, Italy.
[39]
R. Mugandani, M. Wuta, A. Makarau, and B. Chipindu, “Re-classification of agro-ecological regions of Zimbabwe in conformity with climate variability and change,” African Crop Science Journal, vol. 20, no. supplement 2, pp. 361–369, 2012.
[40]
P. Kurukulasuriya and R. Mendelsohn, How Will Climate Change Shift Agro-Ecological Zones and Impact African Agriculture?vol. 4717 of World Bank Policy Research Working Paper, World Bank, Washington, DC, USA, 2008.
[41]
FAO, A Framework for Land Evaluation: FAO Soils Bulletin 32. International Institute for Land Reclamation and Improvement, International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands; Food and Agriculture Organization of the United Nations, Rome, Italy, 1977.
[42]
C. E. Sys and J. van Ranst, Land Evaluation Part II, Methods in Land Evaluation, vol. 7 of Agricultural Publications, General Administration for Development, Brussels, Belgium, 1991.
[43]
N. Ramankutty, T. W. Hertel, H. L. Lee, and S. Rose, Global Land Use and Land Cover Data for Integrated Assessment Modeling, Book Chapter for the Snowmass Conference, Snowmass, Colo, USA, 2005.
[44]
N. Alexandratos, World Agriculture Towards 2010, Food and Agriculture Organization of the United Nations, Rome, Italy, 1995.
[45]
J. Doorenbos and A. H. Kassam, Yield Response To Water, Irrigation and Drainage Paper no. 33, Food and Agriculture Organization of the United Nations, Rome, Italy, 1979.
[46]
N. Ramankutty and J. A. Foley, “Estimating historical changes in global land cover: croplands from 1700 to 1992,” Global Biogeochemical Cycles, vol. 13, no. 4, pp. 997–1027, 1999.
[47]
H. Yan, H. A. Nix, M. F. Hutchinson, and T. H. Booth, “Spatial interpolation of monthly mean climate data for China,” International Journal of Climatology, vol. 25, no. 10, pp. 1369–1379, 2005.
[48]
G. Yu, H. He, X. A. Liu, and D. Niu, “Study on spatialization technology of terrestrial eco-information in China (I): the approach of spatialization in meteorology/climate information,” Journal of Natural Resources, vol. 19, no. 4, pp. 537–544, 2004.
[49]
X. Z. Deng, H. B. Su, and J. Y. Zhan, “Integration of multiple data sources to simulate the dynamics of land systems,” Sensors, vol. 8, no. 2, pp. 620–634, 2008.
[50]
X. Z. Deng, J. K. Huang, Q. Q. Huang, S. Rozelle, and J. Gibson, “Do roads lead to grassland degradation or restoration? A case study in Inner Mongolia, China,” Environment and Development Economics, vol. 16, no. 6, pp. 751–773, 2011.
[51]
A. Tait, R. Henderson, R. Turner, and X. G. Zheng, “Thin plate smoothing spline interpolation of daily rainfall for New Zealand using a climatological rainfall surface,” International Journal of Climatology, vol. 26, no. 14, pp. 2097–2115, 2006.
[52]
National General Survey of Soil Office, China Soil Book, vol. 1, China Agriculture Press, Beijing, China, 1993.
[53]
National General Survey of Soil Office, China Soil Book, vol. 2-3, China Agriculture Press, Beijing, China, 1994.
[54]
National General Survey of Soil Office, China Soil Book, vol. 4-5, China Agriculture Press, Beijing, China.
[55]
National General Survey of Soil Office, China Soil Book, vol. 6, China Agriculture Press, Beijing, China, 1996.
[56]
Q. Z. Mu, M. S. Zhao, and S. W. Running, “Improvements to a MODIS global terrestrial evapotranspiration algorithm,” Remote Sensing of Environment, vol. 115, no. 8, pp. 1781–1800, 2011.
[57]
M. Jung, M. Reichstein, P. Ciais et al., “Recent decline in the global land evapotranspiration trend due to limited moisture supply,” Nature, vol. 467, no. 7318, pp. 951–954, 2010.
[58]
N. Nakicenovic, J. Alcamo, G. Davis, et al., Special Report on Emissions Scenarios, Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK, 2000.