全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Comparison of Spheroidal Carbonaceous Particle Data with Modelled Atmospheric Black Carbon Concentration and Deposition and Air Mass Sources in Northern Europe, 1850–2010

DOI: 10.1155/2013/393926

Full-Text   Cite this paper   Add to My Lib

Abstract:

Spheroidal carbonaceous particles (SCP) are a well-defined fraction of black carbon (BC), produced only by the incomplete combustion of fossil fuels such as coal and oil. Their past concentrations have been studied using environmental archives, but, additionally, historical trends of BC concentration and deposition can be estimated by modelling. These models are based on BC emission inventories, but actual measurements of BC concentration and deposition play an essential role in their evaluation and validation. We use the chemistry transport model OsloCTM2 to model historical time series of BC concentration and deposition from energy and industrial sources and compare these to sedimentary measurements of SCPs obtained from lake sediments in Northern Europe from 1850 to 2010. To determine the origin of SCPs we generated back trajectories of air masses to the study sites. Generally, trends of SCP deposition and modelled results agree reasonably well, showing rapidly increasing values from 1950, to a peak in 1980, and a decrease towards the present. Empirical SCP data show differences in deposition magnitude between the sites that are not captured by the model but which may be explained by different air mass transport patterns. The results highlight the need for numerous observational records to reliably validate model results. 1. Introduction The term black carbon (BC) was first introduced by Novakov [1] and incorporates a wide spectrum of charred material formed by incomplete combustion of biomass and fossil fuels [2]. Generally, BC can be grouped into larger chars, which are aromatic residues reflecting the structure of the burned material or the nature of the burning process, and smaller particles, soots, which are combustion condensates formed in the vapour phase [1–5]. The precise definition of BC depends on the method used for its quantification [6]; therefore, no single definition has been widely accepted, especially across disciplines. However, within this imprecise myriad of carbonaceous particles, spheroidal carbonaceous particles (SCPs) are a clearly identifiable component of BC. SCPs are a component of fly ash and result only from the incomplete combustion of fossil fuels, mainly coal and oil, at high temperatures (greater than 1000°C) in heavy industry and energy production. They have no natural sources [7] and consist mainly of elemental carbon making them chemically inert. Morphologically they are the spheroidal “skeletons” left by the incomplete combustion of fuel particles (coal) and droplets (oil) (see Figure 1). They thereby physically

References

[1]  T. Novakov, “The role of soot and primary oxidants in atmospheric chemistry,” Science of the Total Environment, vol. 36, pp. 1–10, 1984.
[2]  E. D. Goldberg, Black Carbon in the Environment, John Wiley & Sons, New York, NY, USA, 1985.
[3]  J. I. Hedges, G. Eglinton, P. G. Hatcher et al., “The molecularly-uncharacterized component of nonliving organic matter in natural environments,” Organic Geochemistry, vol. 31, no. 10, pp. 945–958, 2000.
[4]  C. A. Masiello, “New directions in black carbon organic geochemistry,” Marine Chemistry, vol. 92, no. 1–4, pp. 201–213, 2004.
[5]  M. Elmquist, G. Cornelissen, Z. Kukulska, and ?. Gustafsson, “Distinct oxidative stabilities of char versus soot black carbon: implications for quantification and environmental recalcitrance,” Global Biogeochemical Cycles, vol. 20, no. 2, Article ID GB2009, 2006.
[6]  K. Hammes, M. W. I. Schmidt, R. J. Smernik, L. A. Currie, W. P. Ball, et al., “Comparison of quantification methods to measure fire-derived (black/elemental carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere,” Global Biogeochemical Cycles, vol. 21, Article ID GB3016, 2007.
[7]  N. L. Rose and B. Rippey, “The historical record of PAH, PCB, trace metal and fly-ash particle deposition at a remote lake in north-west Scotland,” Environmental Pollution, vol. 117, no. 1, pp. 121–132, 2002.
[8]  N. L. Rose, S. Harlock, and P. G. Appleby, “The spatial and temporal distributions of spheroidal carbonaceous fly- ash particles (SCP) in the sediment records of European Mountain Lakes,” Water, Air, and Soil Pollution, vol. 113, no. 1–4, pp. 1–32, 1999.
[9]  J. N. Cape, M. Coyle, and P. Dumitrean, “The atmospheric lifetime of black carbon,” Atmospheric Environment, vol. 59, pp. 256–263, 2012.
[10]  R. Jaenicke, “Atmospheric aerosols and global climate,” Journal of Aerosol Science, vol. 11, no. 5-6, pp. 577–588, 1980.
[11]  M. Wik and I. Renberg, “Recent atmospheric deposition in Sweden of carbonaceous particles from fossil-fuel combustion surveyed using lake sediments,” Ambio, vol. 20, no. 7, pp. 289–292, 1991.
[12]  N. L. Rose and S. Juggins, “A spatial relationship between carbonaceous particles in lake sediments and sulphur deposition,” Atmospheric Environment, vol. 28, no. 2, pp. 177–183, 1994.
[13]  N. L. Rose, C. L. Rose, J. F. Boyle, and P. G. Appleby, “Lake-sediment evidence for local and remote sources of atmospherically deposited pollutants on Svalbard,” Journal of Paleolimnology, vol. 31, no. 4, pp. 499–513, 2004.
[14]  S. Hicks and E. Isaksson, “Assessing source areas of pollutants from studies of fly ash, charcoal, and pollen from Svalbard snow and ice,” Journal of Geophysical Research D, vol. 111, no. 2, Article ID D02113, 2006.
[15]  R. Bindler, I. Renberg, P. G. Appleby, N. J. Anderson, and N. L. Rose, “Mercury accumulation rates and spatial patterns in lake sediments from west greenland: a coast to ice margin transect,” Environmental Science and Technology, vol. 35, no. 9, pp. 1736–1741, 2001.
[16]  N. C. Doubleday, M. S. V. Douglas, and J. P. Smol, “Paleoenvironmental studies of black carbon deposition in the High Arctic: a case study from Northern Ellesmere Island,” Science of the Total Environment, vol. 160-161, pp. 661–668, 1995.
[17]  C. C. Martins, M. C. Bícego, N. L. Rose et al., “Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica,” Environmental Pollution, vol. 158, no. 1, pp. 192–200, 2010.
[18]  N. L. Rose, V. J. Jones, P. E. Noon, D. A. Hodgson, R. J. Flower, and P. G. Appleby, “Long-range transport of pollutants to the Falkland Islands and Antarctica: evidence from lake sediment fly-ash particle records,” Environmental Science and Technology, vol. 46, no. 18, pp. 9881–9889, 2012.
[19]  D. Broman, C. N?f, M. Wik, and I. Renberg, “The importance of spheroidal carbonaceous particles for the distribution of particulate polycyclic aromatic hydrocarbons in an estuarine-like urban coastal water area,” Chemosphere, vol. 21, no. 1-2, pp. 263–286, 1990.
[20]  N. L. Rose and H. Yang, “Temporal and spatial patterns of spheroidal carbonaceous particles (SCPs) in sediments, soils and deposition at Lochnagar,” in Lochnagar: The Natural History of a Mountain Lake. Developments in Paleoenvironmental Research, N. L. Rose, Ed., pp. 403–423, Springer, Dordrecht, The Netherlands, 2007.
[21]  N. L. Rose, “Fly-ash particles,” in Tracking Environmental Change Using Lake Sediments, W. M. Last and J. P. Smol, Eds., vol. 2 of Physical and Geochemical Methods, pp. 319–349, Kluwer Academic, Dordrecht, The Netherlands, 2001.
[22]  R. B. Skeie, T. Berntsen, G. Myhre et al., “Black carbon in the atmosphere and snow, from pre-industrial times until present,” Atmospheric Chemistry and Physics, vol. 11, no. 14, pp. 6809–6836, 2011.
[23]  J.-F. Lamarque, T. C. Bond, V. Eyring et al., “Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application,” Atmospheric Chemistry and Physics, vol. 10, no. 15, pp. 7017–7039, 2010.
[24]  Y. H. Lee, J. F. Lamarque, M. G. Flanner, C. Jiao, D. T. Shindell, et al., “Evaluation of preindustrial to present-day black carbon and its albedo forcing from ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison Project),” Atmospheric Chemistry and Physics Discussion, vol. 12, pp. 21713–21778, 2012.
[25]  J. R. McConnell, R. Edwards, G. L. Kok et al., “20th-Century industrial black carbon emissions altered arctic climate forcing,” Science, vol. 317, no. 5843, pp. 1381–1384, 2007.
[26]  J. R. McConnell, “New Directions: historical black carbon and other ice core aerosol records in the Arctic for GCM evaluation,” Atmospheric Environment, vol. 44, no. 21-22, pp. 2665–2666, 2010.
[27]  J. R. McConnell and R. Edwards, “Coal burning leaves toxic heavy metal legacy in the Arctic,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 34, pp. 12140–12144, 2008.
[28]  J. F. Lamarque, D. T. Shindell, B. Josse, P. J. Young, I. Cionni, et al., “The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics,” Geoscientific Model Development, vol. 6, pp. 179–206, 2013.
[29]  T. C. Bond, S. J. Doherty, D. W. Fahey, P. M. Forster, T. Berntsen, et al., “Bounding the role of black carbon in the climate system: a scientific assessment,” Journal of Geophysical Research-Atmospheres, vol. 118, pp. 1–173, 2013.
[30]  N. L. Rose, “Carbonaceous particle record in lake sediments from the Arctic and other remote areas of the Northern Hemisphere,” Science of the Total Environment, vol. 160-161, pp. 487–496, 1995.
[31]  S. J. Doherty, S. G. Warren, T. C. Grenfell, A. D. Clarke, and R. E. Brandt, “Light-absorbing impurities in Arctic snow,” Atmospheric Chemistry and Physics, vol. 10, no. 23, pp. 11647–11680, 2010.
[32]  M. T. Lund and T. Berntsen, “Parameterization of black carbon aging in the OsloCTM2 and implications for regional transport to the Arctic,” Atmospheric Chemistry and Physics, vol. 12, no. 15, pp. 6999–7014, 2012.
[33]  T. Berntsen, J. Fuglestvedt, G. Myhre, F. Stordal, and T. F. Berglen, “Abatement of greenhouse gases: does location matter?” Climatic Change, vol. 74, no. 4, pp. 377–411, 2006.
[34]  I. Renberg and H. Hansson, “The HTH sediment corer,” Journal of Paleolimnology, vol. 40, no. 2, pp. 655–659, 2008.
[35]  J. R. Glew, “A new trigger mechanism for sediment samplers,” Journal of Paleolimnology, vol. 2, no. 4, pp. 241–243, 1989.
[36]  P. G. Appleby, P. J. Nolan, D. W. Gifford et al., “210Pb dating by low background gamma counting,” Hydrobiologia, vol. 143, no. 1, pp. 21–27, 1986.
[37]  P. G. Appleby, N. Richardson, and P. J. Nolan, “Self-absorption corrections for well-type germanium detectors,” Nuclear Instruments and Methods in Physics Research B, vol. 71, no. 2, pp. 228–233, 1992.
[38]  N. L. Rose, “A note on further refinements to a procedure for the extraction of carbonaceous fly-ash particles from sediments,” Journal of Paleolimnology, vol. 11, no. 2, pp. 201–204, 1994.
[39]  N. L. Rose, “Quality control in the analysis of lake sediments for spheroidal carbonaceous particles,” Limnology and Oceanography, vol. 6, pp. 172–179, 2008.
[40]  M. J. Prather, “Numerical advection by conservation of 2nd-order moments,” Journal of Geophysical Research-Atmospheres, vol. 91, no. D6, pp. 6671–6681, 1986.
[41]  M. Tiedtke, “A comprehensive mass flux scheme for cumulus parameterization in large-scale models,” Monthly Weather Review, vol. 117, no. 8, pp. 1779–1800, 1989.
[42]  A. A. M. Holtslag, E. I. F. De Bruijn, and H.-L. Pan, “A high resolution air mass transformation model for short-range weather forecasting,” Monthly Weather Review, vol. 118, no. 8, pp. 1561–1575, 1990.
[43]  A. M. Thomson, K. V. Calvin, S. J. Smith et al., “RCP4.5: a pathway for stabilization of radiative forcing by 2100,” Climatic Change, vol. 109, no. 1, pp. 77–94, 2011.
[44]  W. F. Cooke, C. Liousse, H. Cachier, and J. Feichter, “Construction of a 1 degrees x 1 degrees fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model,” Journal of Geophysical Research D, vol. 104, no. 18, pp. 22137–22162, 1999.
[45]  E. Vignati, J. Wilson, and P. Stier, “M7: an efficient size-resolved aerosol microphysics module for large-scale aerosol transport models,” Journal of Geophysical Research D, vol. 109, no. D22, article 27, 2004.
[46]  A. Stohl, C. Forster, A. Frank, P. Seibert, and G. Wotawa, “Technical note: the Lagrangian particle dispersion model FLEXPART version 6.2,” Atmospheric Chemistry and Physics, vol. 5, no. 9, pp. 2461–2474, 2005.
[47]  A. Stohl and D. J. Thomson, “A density correction for Lagrangian particle dispersion models,” Boundary-Layer Meteorology, vol. 90, no. 1, pp. 155–167, 1999.
[48]  A. Stohl, A. J. Prata, S. Eckhardt et al., “Determination of time-and height-resolved volcanic ash emissions and their use for quantitative ash dispersion modeling: the 2010 Eyjafjallaj?kull eruption,” Atmospheric Chemistry and Physics, vol. 11, no. 9, pp. 4333–4351, 2011.
[49]  J. L. Palau, J. Meliá, D. Segarra, G. Pérez-Landa, F. Santa-Cruz, and M. M. Millán, “Seasonal differences in SO2 ground-level impacts from a power plant plume on complex terrain,” Environmental Monitoring and Assessment, vol. 149, no. 1–4, pp. 445–455, 2009.
[50]  A. Stohl, “Characteristics of atmospheric transport into the Arctic troposphere,” Journal of Geophysical Research, vol. 111, no. D11, pp. 1–17, 2006.
[51]  D. P. Dee, S. M. Uppala, A. J. Simmons et al., “The ERA-Interim reanalysis: configuration and performance of the data assimilation system,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 656, pp. 553–597, 2011.
[52]  S. M. Uppala, P. W. K?llberg, A. J. Simmons et al., et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 2961–3012, 2005, http://reanalyses.org/atmosphere/era40-references.
[53]  A. Korhola, S. Sorvari, M. Rautio et al., “A multi-proxy analysis of climate impacts on the recent development of subarctic Lake Saanaj?rvi in Finnish Lapland,” Journal of Paleolimnology, vol. 28, no. 1, pp. 59–77, 2002.
[54]  N. L. Rose, S. Juggins, and J. Watt, “The characterisation of carbonaceous fly-ash particles from major European fossil-fuel types and applications to environmental samples,” Atmospheric Environment, vol. 33, no. 17, pp. 2699–2713, 1999.
[55]  T. S. Traaen, T. Moiseenko, V. Dauvalter, S. Rognerud, A. Hemiksen, and L. Kudravseva, “Acidification of surface waters, nickel and copper in water and lake sediments in the Soviet-Norwegian border areas,” Progress Report to Norwegian-Soviet Environmental Protection Commission, 1991.
[56]  A. Korhola, J. Weckstr?m, and M. Nyman, “Predicting the long-term acidification trends in small subarctic lakes using diatoms,” Journal of Applied Ecology, vol. 36, no. 6, pp. 1021–1034, 1999.
[57]  G. Muri, S. G. Wakeham, and N. L. Rose, “Records of atmospheric delivery of pyrolysis-derived pollutants in recent mountain lake sediments of the Julian Alps (NW Slovenia),” Environmental Pollution, vol. 139, no. 3, pp. 461–468, 2006.
[58]  ?. Gustafsson, F. Haghseta, C. Chan, J. Macfarlane, and P. M. Gschwend, “Quantification of the dilute sedimentary soot phase: implications for PAH speciation and bioavailability,” Environmental Science and Technology, vol. 31, no. 1, pp. 203–209, 1997.
[59]  ?. Gustafsson, T. D. Bucheli, Z. Kukulska et al., “Evaluation of a protocol for the quantification of black carbon in sediments,” Global Biogeochemical Cycles, vol. 15, no. 4, pp. 881–890, 2001.
[60]  T. C. Bond, D. G. Streets, K. F. Yarber, S. M. Nelson, J.-H. Woo, and Z. Klimont, “A technology-based global inventory of black and organic carbon emissions from combustion,” Journal of Geophysical Research D, vol. 109, no. D14, article 27, 2004.
[61]  T. C. Bond, E. Bhardwaj, R. Dong et al., “Historical emissions of black and organic carbon aerosol from energy-related combustion, 1850–2000,” Global Biogeochemical Cycles, vol. 21, no. 2, Article ID GB2018, 2007.
[62]  M. Elmquist, Z. Zencak, and ?. Gustafsson, “A 700 year sediment record of black carbon and polycyclic aromatic hydrocarbons near the EMEP air monitoring station in Aspvreten, Sweden,” Environmental Science and Technology, vol. 41, no. 20, pp. 6926–6932, 2007.
[63]  D. T. Shindell, M. Chin, F. Dentener et al., “A multi-model assessment of pollution transport to the Arctic,” Atmospheric Chemistry and Physics, vol. 8, no. 17, pp. 5353–5372, 2008.
[64]  Y. Han, J. Cao, Z. An et al., “Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments,” Chemosphere, vol. 69, no. 4, pp. 526–533, 2007.
[65]  Y. Han, J. Cao, J. C. Chow et al., “Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC,” Chemosphere, vol. 69, no. 4, pp. 569–574, 2007.
[66]  L. Husain, A. J. Khan, T. Ahmed, K. Swami, A. Bari, et al., “Trends in atmospheric elemental carbon from 1835 to 2005,” Journal of Geophysical Research, vol. 113, no. D13102, 2008.
[67]  Z. Zencak, M. Elmquist, and ?. Gustafsson, “Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method,” Atmospheric Environment, vol. 41, no. 36, pp. 7895–7906, 2007.
[68]  E. Vignati, M. Karl, M. Krol, J. Wilson, P. Stier, and F. Cavalli, “Sources of uncertainties in modelling black carbon at the global scale,” Atmospheric Chemistry and Physics, vol. 10, no. 6, pp. 2595–2611, 2010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133