全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

DOI: 10.1155/2013/361471

Full-Text   Cite this paper   Add to My Lib

Abstract:

Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux) in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively. 1. Introduction 1.1. Background Human thermal comfort is defined as a condition of mind, which expresses satisfaction with the surrounding environment. In the arid regions, evaporative cooling is often applied to reduce the inside greenhouse air temperature in summer. Greenhouse environment is usually designed according to the crop growth requirements ( : 20–30°C; RH: 70–80%) which, in many situations, may not be suitable for humans that are working in the greenhouse [1]. This is mainly because relative humidity in the evaporatively-cooled greenhouses is much higher than outside. High air humidity may provide discomfort sensations and heat stress in the greenhouse. On the other hand, evaporative cooling and air stream can improve the comfort conditions in the greenhouses in hot summer [2]. Discomfort and heat stress reduce productivity of the greenhouse workers and may lead to more serious health problems, especially for aged workers [2]. Therefore, greenhouse workers should take care when they enter the greenhouse in hot summer to protect their health from heat and/or sunstroke [1]. Factors affecting human thermal comfort and heat stress level can be classified according to [3] as (i) environmental factors such as the dry bulb temperature of air and its relative humidity ( and RH), air current speed, and the mean radiant temperature of the

References

[1]  L. Okushima, S. Sase, L. In-Bok, and B. J. Bailey, “Thermal environment and stress of workers in naturally ventilated greenhouses under mild climate,” in Proceedings of the 5th International Symposium on Protected Cultivation in Mild Winter Climates: Current Trends for Suistainable Technologies, Fernandez, Martinez, and Castilla, Eds., pp. 793–798, 2001.
[2]  T. Shimazu, H. Hamamoto, T. Okada, T. Ikeda, and K. Tanaka, “Microclimate and human thermal comfort in pipe greenhouses with insect-proof screens for vegetable cultivation with restricted use of chemical pesticides,” Journal of Agricultural Meteorology of Japan, vol. 60, no. 5, pp. 813–816, 2005.
[3]  “Thermal environmental conditions for human occupancy,” ANSI/ASHRAE Standard 55, The American Society of Heating, Refrigeration and Air Conditioning Engineers, Atlanta, Ga, USA, 2004.
[4]  B. Givoni, M. Noguchi, H. Saaroni et al., “Outdoor comfort research issues,” Energy and Buildings, vol. 35, no. 1, pp. 77–86, 2003.
[5]  S. Atthajariyakul and T. Leephakpreeda, “Neural computing thermal comfort index for HVAC systems,” Energy Conversion and Management, vol. 46, no. 15-16, pp. 2553–2565, 2005.
[6]  A. Forsthoff and H. Neffgen, “The assessment of heat radiation,” International Journal of Industrial Ergonomics, vol. 23, no. 5-6, pp. 407–414, 1999.
[7]  “Introduction to thermal comfort standard,” http://www.utci.org/cost/publications/ISO%20Standards%20Ken%20Parsons.pdf.
[8]  L. Bánhidi and Z. B. Biro, “Design and calculation possibilities for the heat exchange conditions of the human body,” Periodica Polytechnica, Mechanical Engineering, vol. 44, no. 2, pp. 185–193, 2000.
[9]  L. Serres, A. Trombe, and J. Miriel, “Solar fluxes absorbed by the dweller of glazed premises. Influence upon the thermal comfort equation,” International Journal of Thermal Sciences, vol. 40, no. 5, pp. 478–488, 2001.
[10]  M. Prek, “Thermodynamical analysis of human thermal comfort,” Energy, vol. 31, no. 5, pp. 732–743, 2006.
[11]  S. Yilmaz, S. Toy, and H. Yilmaz, “Human thermal comfort over three different land surfaces during summer in the city of Erzurum, Turkey,” Atmosfera, vol. 20, no. 3, pp. 289–297, 2007.
[12]  H. Mayer, J. Holst, and F. Imbery, “Human thermal comfort within urban structures in a central European city,” in Proceeding of the 7th International Conference on Urban Climate, Yokohama, Japan, June2009.
[13]  Y. Epstein and D. S. Moran, “Thermal comfort and the heat stress indices,” Industrial Health, vol. 44, no. 3, pp. 388–398, 2006.
[14]  C. Deb and A. Ramachandraiah, “Review of studies on outdoor thermal comfort using physiological equivalent temperature (PET),” International Journal of Engineering Science and Technology, vol. 92, no. 7, pp. 2825–2828, 2011.
[15]  S. Thorsson, F. Lindberg, I. Eliasson, and B. Holmer, “Different methods for estimating the mean radiant temperature in an outdoor urban setting,” International Journal of Climatology, vol. 27, no. 14, pp. 1983–1993, 2007.
[16]  “Estimating wet bulb globe temperature using standard meteorological Measurements,” WSRC-MS-99-00757, http://sti.srs.gov/fulltext/ms9900757/ms9900757.pdf#search='wsrcms9900757'.
[17]  T. Itagi, “Deployment of laborsaving and comfortable technology on cultivation Management,” in Handbook of Greenhouse Horticulture, JAGH, Ed., pp. 218–227, Agripress, Tokyo, Japan, 2003.
[18]  A. M. Abdel-Ghany, I. M. Al-Helal, and M. R. Shady, “Human thermal comfort and heat stress in an outdoor urban arid environment: a case study,” Advances in Meteorology, vol. 2013, Article ID 693541, 7 pages, 2013.
[19]  A. Matzarakis, F. Rutz, and H. Mayer, “Modelling radiation fluxes in simple and complex environments: application of the RayMan model,” International Journal of Biometeorology, vol. 51, no. 4, pp. 323–334, 2007.
[20]  A. Matzarakis, F. Rutz, and H. Mayer, “Modeling the thermal bioclimate in urban areas with the RayMan model,” in Proceeding of the 23rd Conference on Passive and Low Energy Architecture (PLEA '06), Geneva, Switzerland, September 2006.
[21]  http://www.utci.org/utci_doku.php.
[22]  http://www.utci.org/utcineu/utcineu.php.
[23]  “OSHA Technical Manual (OTM). Section III: chapter IV: heat stress,” https://www.osha.gov/dts/osta/otm/otm_iii/otm_iii_4.html.
[24]  A. M. Abdel-Ghany, E. Goto, and T. Kozai, “Evaporation characteristics in a naturally ventilated, fog-cooled greenhouse,” Renewable Energy, vol. 31, no. 14, pp. 2207–2226, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133