Urban land expansion plays an important role in climate change. It is significant to select a reasonable urban expansion pattern to mitigate the impact of urban land expansion on the regional climate in the rapid urbanization process. In this paper, taking Wuhan metropolitan as the case study area, and three urbanization patterns scenarios are designed to simulate spatial patterns of urban land expansion in the future using the Partitioned and Asynchronous Cellular Automata Model. Then, simulation results of land use are adjusted and inputted into WRF (Weather Research and Forecast) model to simulate regional climate change. The results show that: (1) warming effect is strongest under centralized urbanization while it is on the opposite under decentralized scenario; (2) the warming effect is stronger and wider in centralized urbanization scenario than in decentralized urbanization scenario; (3) the impact trends of urban land use expansion on precipitation are basically the same under different scenarios; (4) and spatial distribution of rainfall was more concentrated under centralized urbanization scenario, and there is a rainfall center of wider scope, greater intensity. Accordingly, it can be concluded that decentralized urbanization is a reasonable urbanization pattern to mitigate climate change in rapid urbanization period. 1. Introduction Urbanization is one of the most important anthropogenic influences on climate. By transforming the nature land cover to the artificial state, and anthropogenic heat emissions, the process of urbanization has a profound impact on global climate change [1]. Therefore, with the rapid urbanization, the impact of urbanization especially urban land expansion on global climate change has been one of the hotspots in research fields [2–5]. Using 40 years’ climate change data and land use data of Hong Kong, Ka and Edward (2013) found that with the evolution of natural vegetation and rural landscape to urban landscape, the trend of rising temperatures in urban areas has become more apparent [6]. Combined with remote sensing and spatial statistical model, Xiong et al. (2012) studied the impact of four periods of urban land expansion on surface temperature from 1990 to 2009 in Guangzhou, and found that there is a significant correlation between the urban heat island intensity and urban land expansion in Guangzhou City [7]. Guo et al. (2012) constructed urbanization index according to different land covers and analyzed effects of different degrees of urbanizations on surface temperature [8]. The results indicated that
References
[1]
G. Churkina, “Modeling the carbon cycle of urban systems,” Ecological Modelling, vol. 216, no. 2, pp. 107–113, 2008.
[2]
R. Bornstein and Q. Lin, “Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies,” Atmospheric Environment, vol. 34, no. 3, pp. 507–516, 2000.
[3]
R. A. Pielke Sr., G. Marland, R. A. Betts et al., “The influence of land-use change and landscape dynamics on the climate system: relevance to climate-change policy beyond the radiative effect of greenhouse gases,” Philosophical Transactions of the Royal Society A, vol. 360, no. 1797, pp. 1705–1719, 2002.
[4]
M. Lei, D. Niyogi, C. Kishtawal et al., “Effect of explicit urban land surface representation on the simulation of the 26 July 2005 heavy rain event over Mumbai, India,” Atmospheric Chemistry and Physics, vol. 8, no. 20, pp. 5975–5995, 2008.
[5]
X. Deng, C. Zhao, and H. Yan, “Systematic modeling of impacts of land use and land cover changes on regional climate: a review,” Advances in Meteorology, vol. 2013, Article ID 317678, 10 pages, 2013.
[6]
L. Ka and N. Edward, “An investigation of urbanization effect on urban and rural Hong Kong using a 40-year extended temperature record,” Landscape and Urban Planning, vol. 114, pp. 42–52, 2013.
[7]
Y. Xiong, S. Huang, F. Chen, H. Ye, C. Wang, and C. Zhu, “The impacts of rapid urbanization on the thermal environment: a remote sensing study of Guangzhou, South China,” Remote Sensing, vol. 4, pp. 2033–2056, 2012.
[8]
Z. Guo, S. Wang, M. Cheng, and Y. Shu, “Assess the effect of different degrees of urbanization on land surface temperature using remote sensing images,” Procedia Environmental Sciences, vol. 13, pp. 935–942, 2012.
[9]
C. M. Kishtawal, D. Niyogi, M. Tewari, R. A. Pielke, and J. M. Shepherd, “Urbanization signature in the observed heavy rainfall climatology over India,” International Journal of Climatology, vol. 30, no. 13, pp. 1908–1916, 2010.
[10]
M. Chen, W. Liu, and X. Tao, “Evolution and assessment on China’s urbanization 1960—2010: under-urbanization or over-urbanization?” Habitat International, vol. 38, pp. 25–33, 2013.
[11]
L. Salvati, A. Sateriano, and S. Bajocco, “To grow or to sprawl? Land Cover Relationships in a Mediterranean City Region and implications for land use management,” Cities, vol. 30, pp. 113–121, 2013.
[12]
J. Wu, G. D. Jenerette, A. Buyantuyev, and C. L. Redman, “Quantifying spatiotemporal patterns of urbanization: the case of the two fastest growing metropolitan regions in the United States,” Ecological Complexity, vol. 8, no. 1, pp. 1–8, 2011.
[13]
B. He, C. Ding, G. Xu, H. Liu, J. Liu, and Q. Zhang, “Surface temperature characteristics based on MODIS in Wuhan city circle,” Resources and Environment, vol. 19, no. 12, pp. 1379–1385, 2010.
[14]
J. Liu, M. Liu, and D. Zhuang, “Spatial pattern analysis of China's recent land-use change,” Chinese Science, vol. 32, no. 12, pp. 1031–1040, 2002.
[15]
X. Li, A. G. O. Yeh, and X. Liu, Geographical Simulation Systems: Cellular Automata and Multi-Agent Systems, Science Press, Beijing, China, 2007.
[16]
X. Ke and F. Bian, “A partitioned & asynchronous CA based on spatial data mining,” Journal of Image and Graphics, vol. 15, no. 6, pp. 921–930, 2010.
[17]
X. Ke, A partitioned & asynchronous CA model and its sensitivity to scales [Ph.D. dissertation], Wuhan University, 2009.