全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Estimates of Aerosol Indirect Effect from Terra MODIS over Republic of Korea

DOI: 10.1155/2013/976813

Full-Text   Cite this paper   Add to My Lib

Abstract:

Moderate resolution imaging spectroradiometer (MODIS) data have been analyzed over four different regions (Yellow sea, Korean inland, East Sea, and South Sea) in Republic of Korea to investigate the seasonal variability of aerosol-cloud properties and aerosol indirect effect during the past decade (2000–2009). Aerosol optical depth (AOD) was found to be consistently high during spring. Cloud ice radius (CIR) also showed higher values during spring, while an enhancement in cloud water radius (CWR) and fine mode fraction (FMF) was observed during summer. AOD and aerosol index (AI) were found to be higher during January to June. However, FMF and CWR showed enhancement during July to December. Aerosol indirect effect (AIE) in each year has been estimated and found to be showing positive and negative indirect effects. The AIE for fixed cloud ice path (CIP) showed positive indirect effect (Twomey effect) over Yellow sea, while the AIE for fixed cloud water path (CWP) showed a major negative indirect effect (anti-Twomey effect) over all regions. During Changma (summer monsoon) period, the AIE for both CIP and CWP showed dominant anti-Twomey effect in middle and low level clouds, indicating the growth of cloud droplet radius with changes in aerosols, enhancing the precipitation. 1. Introduction Aerosols are known to impact the formation and the life cycle of clouds by acting as cloud condensation nuclei (CCN) or ice nuclei (IN). A wide range of measurements shows that anthropogenic aerosols induce changes in clouds and their optical properties. These changes are popularly known as aerosol indirect effect (AIE) [1–3]. It is important to understand and quantify the microphysical impact of both natural and anthropogenic aerosols on clouds, in order to understand and predict climate change. The main identified AIEs include the cloud albedo effect [4] and cloud life time effect [5]. The “Twomey effect” (positive indirect effect) refers to a decrease in a cloud effective radius with increasing aerosol content for a fixed liquid water path. Contrary to this effect, an increase in the cloud droplet size with the aerosol load, or an “anti-Twomey effect” (negative indirect effect), was also reported in some parts of the world for certain environmental conditions [6]. It has also been reported that the AIE could be an important factor in modulating the response of large scale systems such as monsoons [7–9]. However, studies on AIE and its influence on precipitation are sparse across the world [10–12]. Aerosols in Asian regions are known to be an important factor in

References

[1]  A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, “Reduction of tropical cloudiness by soot,” Science, vol. 288, no. 5468, pp. 1042–1047, 2000.
[2]  G. Pandithurai, T. Takamura, J. Yamaguchi et al., “Aerosol effect on cloud droplet size as monitored from surface-based remote sensing over East China Sea region,” Geophysical Research Letters, vol. 36, no. 13, Article ID L13805, 2009.
[3]  M. G. Manoj, P. C. S. Devara, S. Joseph, and A. K. Sahai, “Aerosol indirect effect during the aberrant Indian Summer Monsoon breaks of 2009,” Atmospheric Environment, vol. 60, no. 1, pp. 153–163, 2012.
[4]  S. Twomey, “The influence of pollution on the shortwave albedo of clouds,” Journal of Atmospheric Sciences, vol. 34, no. 7, pp. 1149–1152, 1977.
[5]  B. A. Albrecht, “Aerosols, cloud microphysics, and fractional cloudiness,” Science, vol. 245, no. 4923, pp. 1227–1230, 1989.
[6]  T. Yuan, Z. Li, R. Zhang, and J. Fan, “Increase of cloud droplet size with aerosol optical depth: an observation and modeling study,” Journal of Geophysical Research D, vol. 113, no. 4, Article ID D04201, 2008.
[7]  P. K. Patra, S. K. Behera, J. R. Herman, S. Maksyutov, H. Akimoto, and T. Yamagata, “The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics,” Atmospheric Chemistry and Physics, vol. 5, no. 8, pp. 2181–2188, 2005.
[8]  V. R. Kiran, M. Rajeevan, S. V. B. Rao, and N. P. Rao, “Analysis of variations of cloud and aerosol properties associated with active and break spells of Indian summer monsoon using MODIS data,” Geophysical Research Letters, vol. 36, no. 9, Article ID L09706, 2009.
[9]  R. L. Bhawar and P. C. S. Devara, “Study of successive contrasting monsoons (2001-2002) in terms of aerosol variability over a tropical statio Pune, India,” Atmospheric Chemistry and Physics, vol. 10, no. 1, pp. 29–37, 2010.
[10]  A. S. Panicker, G. Pandithurai, and S. Dipu, “Aerosol indirect effect during successive contrasting monsoon seasons over Indian subcontinent using MODIS data,” Atmospheric Environment, vol. 44, no. 15, pp. 1937–1943, 2010.
[11]  P. Chylek, M. K. Dubey, U. Lohmann et al., “Aerosol indirect effect over the Indian Ocean,” Geophysical Research Letters, vol. 33, no. 6, Article ID L06806, 2006.
[12]  A. K. Srivastava, S. Tiwari, P. C. S. Devara et al., “Pre-monsoon aerosol characteristics over the Indo-Gangetic Basin: implications to climatic impact,” Annales Geophysicae, vol. 29, no. 5, pp. 789–804, 2011.
[13]  J.-H. Jeong, D.-I. Lee, C.-C. Wang, S.-M. Jang, C.-H. You, and M. Jang, “Environment and morphology of mesoscale convective systems associated with the Changma front during 9-10 July 2007,” Annales Geophysicae, vol. 30, no. 8, pp. 1235–1248, 2012.
[14]  A. Jayaraman, “Aerosol radiation cloud interactions over the tropical Indian Ocean prior to the onset of the summer monsoon,” Current Science, vol. 81, no. 11, pp. 1437–1445, 2001.
[15]  E.-K. Seo, “Characteristics of summer rainfall over East Asia as observed by TRMM PR,” Journal of Korean Earth Science Society, vol. 32, no. 1, pp. 33–45, 2011.
[16]  T. Chen, W. B. Rossow, and Y. Zhang, “Radiative effects of cloud-type variations,” Journal of Climate, vol. 13, no. 1, pp. 264–286, 2000.
[17]  G. Feingold, W. L. Eberhard, D. E. Veron, and M. Previdi, “First measurements of the Twomey indirect effect using ground-based remote sensors,” Geophysical Research Letters, vol. 30, no. 6, p. 1287, 2003.
[18]  A. K. Srivastava, K. Ram, P. Pant, P. Hegde, and H. Joshi, “Black carbon aerosols over Manora Peak in the Indian Himalayan foothills: implications for climate forcing,” Environmental Research Letters, vol. 7, no. 1, Article ID 014002, 2012.
[19]  K. O. Ogunjobi, Y. J. Kim, and Z. He, “Aerosol optical properties during Asian dust storm episodes in South Korea,” Theoretical and Applied Climatology, vol. 76, no. 1-2, pp. 65–75, 2003.
[20]  A.-S. Panicker, D.-I. Lee, Y.-V. Kumkar, D. Kim, M. Maki, and H. Uyeda, “Decadal climatological trends of aerosol optical parameters over three different environments in South Korea,” International Journal of Climatology, vol. 33, no. 8, pp. 1909–1916, 2012.
[21]  S.-H. Park, A. S. Panicker, D.-I. Lee et al., “Characterization of chemical properties of atmospheric aerosols over anmyeon (South Korea), a super site under global atmosphere watch,” Journal of Atmospheric Chemistry, vol. 67, no. 2-3, pp. 71–86, 2010.
[22]  G. C. Roberts, M. O. Andreae, J. Zhou, and P. Artaxo, “Cloud condensation nuclei in the Amazon Basin: “Marine” conditions over a continent?” Geophysical Research Letters, vol. 28, no. 14, pp. 2807–2810, 2001.
[23]  C. A. Randles, L. M. Russell, and V. Ramaswamy, “Hygroscopic and optical properties of organic sea salt aerosol and consequences for climate forcing,” Geophysical Research Letters, vol. 31, no. 16, Article ID L16108, 2004.
[24]  G. Myhre, F. Stordal, M. Johnsrud et al., “Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models,” Atmospheric Chemistry and Physics, vol. 7, no. 12, pp. 3081–3101, 2007.
[25]  S. Dipu, T. V. Prabha, G. Pandithurai et al., “Impact of elevated aerosol layer on the cloud macrophysical properties prior to monsoon onset,” Atmospheric Environment, vol. 70, no. 1, pp. 454–467, 2013.
[26]  M. Konwar, R. S. Maheskumar, J. R. Kulkarni, E. Freud, B. N. Goswami, and D. Rosenfeld, “Aerosol control on depth of warm rain in convective clouds,” Journal of Geophysical Research, vol. 117, no. 13, Article ID D13204, 2012.
[27]  J. R. Kulkarni, R. S. Maheskumar, S. B. Morwal, et al., “The Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX): overview and preliminary results,” Current Science, vol. 102, no. 3, pp. 413–425, 2012.
[28]  Intergovernmental Panel on Climate Change (IPCC), S. Solomon, D. Qin et al., Climate Change 2007, The Physical Science Basis, Cambridge University Press, New York, NY, USA, 2007.
[29]  W. B. Rossow and R. A. Schiffer, “Advances in understanding clouds from ISCCP,” Bulletin of the American Meteorological Society, vol. 80, no. 11, pp. 2261–2287, 1999.
[30]  B.-G. Kim, S. E. Schwartz, M. A. Miller, and Q. Min, “Effective radius of cloud droplets by ground-based remote sensing: relationship to aerosol,” Journal of Geophysical Research D, vol. 108, no. 23, p. 4740, 2003.
[31]  T. J. Garrett, C. Zhao, X. Dong, G. G. Mace, and P. V. Hobbs, “Effects of varying aerosol regimes on low-level Arctic stratus,” Geophysical Research Letters, vol. 31, no. 17, Article ID L17105, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133