Atmospheric aerosols can interact with clouds and influence the hydrological cycle by acting as cloud condensation nuclei. The current study reviews the results obtained on aerosol-precipitation interactions over India and the surrounding oceanic regions. An analysis of aerosol and cloud characteristics over the Arabian Sea, India, and the Bay of Bengal during summer monsoon in the last decade reveals large regional, intraseasonal, and interannual variations. Aerosol optical depth (AOD) and aerosol absorbing index (AAI) in 2002 (a drought year) are higher over India when compared to normal monsoon years. Cloud effective radius (CER) and cloud optical thickness exhibit a negative correlation with AOD over India, which agrees well with the indirect radiative effects of aerosols. Over Bay of Bengal CER is positively correlated with AOD suggesting an inverse aerosol indirect effect. In future, observatories to measure aerosol characteristics (amount, size, type, chemical composition, mixing, vertical and horizontal distributions), and cloud properties (number and size) over several locations in India, and intense observational campaigns involving aircraft and ships are crucial to unravel the quantitative impact that aerosols have on Indian monsoon. Satellite remote sensing of aerosol distribution, their chemical composition, microphysical properties of clouds, solar irradiance, and terrestrial longwave radiation is important. 1. Introduction Aerosols affect the earth-atmosphere radiation budget directly by scattering and absorbing the incoming solar radiation and indirectly by influencing the processes of formation of clouds and precipitation. The properties of cloud get influenced by aerosols through their role as cloud condensation nuclei and/or ice nuclei. Aerosols alter the intensity of solar radiation scattered back to space, absorbed in the atmosphere, and reaching the surface of the earth which is known as direct radiative effect. Aerosols indirectly can modify the cloud characteristics and influence precipitation in different ways. Aerosols (a) can increase the lifetime of clouds and reflectivity (albedo) and decrease the precipitation and radiation reaching the surface of the earth (cloud lifetime effect), (b) can cause an increase in cloud droplet concentration and a decrease in the cloud effective radii (cloud albedo effect), and (c) can absorb the solar radiation, reemit as thermal radiation, and heat the air mass and may cause evaporation of cloud droplets (semidirect effect) [1]. The level of scientific understanding of the above processes
References
[1]
S. Solomon, D. Qin, M. Manning et al., “Climate change 2007: the physical science basis,” in Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, Mass, USA, 2007.
[2]
S. Ramachandran and R. Cherian, “Regional and seasonal variations in aerosol optical characteristics and their frequency distributions over India during 2001–2005,” Journal of Geophysical Research D, vol. 113, no. 8, Article ID D08207, 2008.
[3]
S. Ramachandran and S. Kedia, “Black carbon aerosols over an urban region: radiative forcing and climate impact,” Journal of Geophysical Research D, vol. 115, no. 10, Article ID D10202, 2010.
[4]
R. Krishnan, V. Kumar, M. Sugi, and J. Yoshimura, “Internal feedbacks from monsoon-midlatitude interactions during droughts in the Indian summer monsoon,” Journal of the Atmospheric Sciences, vol. 66, no. 3, pp. 553–578, 2009.
[5]
J. M. Neena, E. Suhas, and B. N. Goswami, “Leading role of internal dynamics in the 2009 Indian summer monsoon drought,” Journal of Geophysical Research D, vol. 116, no. 13, Article ID D13103, 2011.
[6]
S. K. Dash, M. A. Kulkarni, U. C. Mohanty, and K. Prasad, “Changes in the characteristics of rain events in India,” Journal of Geophysical Research D, vol. 114, no. 10, Article ID D10109, 2009.
[7]
B. Parthasarathy, A. A. Munot, and D. R. Kothawale, “Monthly and seasonal rainfall series for all India homogeneous regions and meteorological sub-divisions: 1871–1994,” Research Report, Indian Institute of Tropical Meteorology, Pune, India, 1995.
[8]
S. Dey and L. Di Girolamo, “A climatology of aerosol optical and microphysical properties over the Indian subcontinent from 9 years (2000–2008) of Multiangle Imaging Spectroradiometer (MISR) data,” Journal of Geophysical Research D, vol. 115, no. 15, Article ID D15204, 2010.
[9]
A. I. Flossmann, W. D. Hall, and H. R. Pruppacher, “A theoretical study of the wet removal of atmospheric pollutants. Part I: the redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops,” Journal of the Atmospheric Sciences, vol. 42, no. 6, pp. 583–606, 1985.
[10]
V. Ramanathan, P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, “Atmosphere: aerosols, climate, and the hydrological cycle,” Science, vol. 294, no. 5549, pp. 2119–2124, 2001.
[11]
A. S. Ackerman, O. B. Toon, D. E. Stevens, A. J. Heymsfield, V. Ramanathan, and E. J. Welton, “Reduction of tropical cloudiness by soot,” Science, vol. 288, no. 5468, pp. 1042–1047, 2000.
[12]
C. E. Chung, V. Ramanathan, and J. T. Kiehl, “Effects of the South Asian absorbing haze on the northeast monsoon and surface-air heat exchange,” Journal of Climate, vol. 15, no. 17, pp. 2462–2476, 2002.
[13]
S. Menon, J. Hansen, L. Nazarenko, and Y. Luo, “Climate effects of black carbon aerosols in China and India,” Science, vol. 297, no. 5590, pp. 2250–2253, 2002.
[14]
V. Ramanathan, C. Chung, D. Kim et al., “Atmospheric brown clouds: impacts on South Asian climate and hydrological cycle,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 15, pp. 5326–5333, 2005.
[15]
G. A. Meehl, J. M. Arblaster, and W. D. Collins, “Effects of black carbon aerosols on the Indian monsoon,” Journal of Climate, vol. 21, no. 12, pp. 2869–2882, 2008.
[16]
M. A. Bollasina, Y. Ming, and V. Ramaswamy, “Anthropogenic aerosols and the weakening of the south asian summer monsoon,” Science, vol. 334, no. 6055, pp. 502–505, 2011.
[17]
R. Cherian, C. Venkataraman, J. Quaas, and S. Ramachandran, “GCM simulations of anthropogenic aerosol-induced changes in aerosol extinction, atmospheric heating and precipitation over India,” Journal of Geophysical Research, vol. 118, pp. 2938–2955, 2013.
[18]
K.-M. Lau and K.-M. Kim, “Observational relationships between aerosol and Asian monsoon rainfall, and circulation,” Geophysical Research Letters, vol. 33, no. 21, Article ID L21810, 2006.
[19]
K. M. Lau, M. K. Kim, and K. M. Kim, “Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau,” Climate Dynamics, vol. 26, no. 7-8, pp. 855–864, 2006.
[20]
K.-M. Lau, V. Ramanathan, G.-X. Wu et al., “The joint aerosol-monsoon experiment: a new challenge for monoon climate research,” Bulletin of the American Meteorological Society, vol. 89, no. 3, pp. 369–383, 2008.
[21]
J. Kuhlmann and J. Quaas, “How can aerosols affect the Asian summer monsoon? Assessment during three consecutive pre-monsoon seasons from CALIPSO satellite data,” Atmospheric Chemistry and Physics, vol. 10, no. 10, pp. 4673–4688, 2010.
[22]
P. K. Patra, S. K. Behera, J. R. Herman, S. Maksyutov, H. Akimoto, and T. Yamagata, “The Indian summer monsoon rainfall: interplay of coupled dynamics, radiation and cloud microphysics,” Atmospheric Chemistry and Physics, vol. 5, no. 8, pp. 2181–2188, 2005.
[23]
P. Chylek, M. K. Dubey, U. Lohmann et al., “Aerosol indirect effect over the Indian Ocean,” Geophysical Research Letters, vol. 33, no. 6, Article ID L06806, 2006.
[24]
P. R. C. Rahul, P. S. Salvekar, and P. C. S. Devara, “Aerosol optical depth variability over Arabian Sea during drought and normal years of Indian monsoon,” Geophysical Research Letters, vol. 35, no. 22, Article ID L22812, 2008.
[25]
R. Gautam, N. C. Hsu, K.-M. Lau, and M. Kafatos, “Aerosol and rainfall variability over the Indian monsoon region: distributions, trends and coupling,” Annales Geophysicae, vol. 27, no. 9, pp. 3691–3703, 2009.
[26]
V. R. Kiran, M. Rajeevan, S. V. B. Rao, and N. P. Rao, “Analysis of variations of cloud and aerosol properties associated with active and break spells of Indian summer monsoon using MODIS data,” Geophysical Research Letters, vol. 36, no. 9, Article ID L09706, 2009.
[27]
M. G. Manoj, P. C. S. Devara, P. D. Safai, and B. N. Goswami, “Absorbing aerosols facilitate transition of Indian monsoon breaks to active spells,” Climate Dynamics, vol. 37, no. 11-12, pp. 2181–2198, 2011.
[28]
G. Pandithurai, S. Dipu, T. V. Prabha, R. S. Maheskumar, J. R. Kulkarni, and B. N. Goswami, “Aerosol effect on droplet spectral dispersion in warm continental cumuli,” Journal of Geophysical Research, vol. 117, no. 16.
[29]
L. A. Remer, R. G. Kleidman, R. C. Levy et al., “Global aerosol climatology from the MODIS satellite sensors,” Journal of Geophysical Research D, vol. 113, no. 14, Article ID D14S07, 2008.
[30]
M. D. King, W. P. Menzel, Y. J. Kaufman et al., “Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 2, pp. 442–456, 2003.
[31]
M. D. King, Y. J. Kaufman, D. Tanré, and T. Nakajima, “Remote sensing of tropospheric aerosols from space: past, present, and future,” Bulletin of the American Meteorological Society, vol. 80, no. 11, pp. 2229–2259, 1999.
[32]
B. N. Holben, D. Tanré, A. Smirnov et al., “An emerging ground-based aerosol climatology: aerosol optical depth from AERONET,” Journal of Geophysical Research D, vol. 106, no. 11, pp. 12067–12097, 2001.
[33]
M. King, S. C. Tsay, S. Platnick, M. Wang, and K.-N. Liou, Cloud Retrieval Algorithms For MODIS: Optical Thickness, Effective Particle Radius and Thermodynamic Phase, Algorithm Theoretical Basis Document ATBD-MOD-05, NASA GSFC, 1998.
[34]
R. H. H. Janssen, L. N. Ganzeveld, P. Kabat, M. Kulmala, T. Nieminen, and R. A. Roebeling, “Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations,” Atmospheric Chemistry and Physics, vol. 11, no. 15, pp. 7701–7713, 2011.
[35]
T. Nakajima, M. D. King, L. F. Radke, and J. D. Spinhirne, “Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part II: marine stratocumulus observations,” Journal of the Atmospheric Sciences, vol. 48, no. 5, pp. 728–750, 1991.
[36]
G. G. Mace, Y. Zhang, S. Platnick, M. D. King, P. Minnis, and P. Yang, “Evaluation of cirrus cloud properties derived from MODIS data using cloud properties derived from ground-based observations collected at the ARM SGP site,” Journal of Applied Meteorology, vol. 44, no. 2, pp. 221–240, 2005.
[37]
O. Torres, A. Tanskanen, B. Veihelmann et al., “Aerosols and surface UV products form Ozone Monitoring Instrument observations: an overview,” Journal of Geophysical Research D, vol. 112, no. 24, Article ID D24S47, 2007.
[38]
G. Habib, C. Venkataraman, I. Chiapello, S. Ramachandran, O. Boucher, and M. Shekar Reddy, “Seasonal and interannual variability in absorbing aerosols over India derived from TOMS: relationship to regional meteorology and emissions,” Atmospheric Environment, vol. 40, no. 11, pp. 1909–1921, 2006.
[39]
R. Srivastava, S. Ramachandran, T. A. Rajesh, and S. Kedia, “Aerosol radiative forcing deduced from observations and models over an urban location and sensitivity to single scattering albedo,” Atmospheric Environment, vol. 45, no. 34, pp. 6163–6171, 2011.
[40]
D. Rosenfeld, “Suppression of rain and snow by urban and industrial air pollution,” Science, vol. 287, no. 5459, pp. 1793–1796, 2000.