A geostatistical downscaling scheme is presented and can generate fine scale precipitation information from coarse scale Tropical Rainfall Measuring Mission (TRMM) data by incorporating auxiliary fine scale environmental variables. Within the geostatistical framework, the TRMM precipitation data are first decomposed into trend and residual components. Quantitative relationships between coarse scale TRMM data and environmental variables are then estimated via regression analysis and used to derive trend components at a fine scale. Next, the residual components, which are the differences between the trend components and the original TRMM data, are then downscaled at a target fine scale via area-to-point kriging. The trend and residual components are finally added to generate fine scale precipitation estimates. Stochastic simulation is also applied to the residual components in order to generate multiple alternative realizations and to compute uncertainty measures. From an experiment using a digital elevation model (DEM) and normalized difference vegetation index (NDVI), the geostatistical downscaling scheme generated the downscaling results that reflected detailed characteristics with better predictive performance, when compared with downscaling without the environmental variables. Multiple realizations and uncertainty measures from simulation also provided useful information for interpretations and further environmental modeling. 1. Introduction Precipitation information has been regarded as one of the important information sources for understanding hydrological, ecological, and environmental systems [1–3]. This information can be obtained from either rain gauge station data or remote sensing data. Although precise precipitation information can be obtained from rain gauge data, few rain gauge data are usually available, which may hinder the generation of reliable maps. Remote sensing data that can provide periodic and exhaustive information can be effectively used to map precipitation information. For example, the Global Precipitation Climatology Project (GPCP) [4] and the Tropical Rainfall Measuring Mission (TRMM) [5] provide precipitation data at regional and global scales [3]. As an international satellite mission, the Global Precipitation Measurement (GPM) mission, scheduled to launch in 2014, will also provide next-generation observations of rain and snow worldwide [6]. Although these missions or projects can provide time-series precipitation information, their spatial resolutions are too coarse to be applied to local analysis (e.g., the finest
References
[1]
P. Goovaerts, “Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall,” Journal of Hydrology, vol. 228, no. 1-2, pp. 113–129, 2000.
[2]
P. C. Kyriakidis, J. Kim, and N. L. Miller, “Geostatistical mapping of precipitation from rain gauge data using atmospheric and terrain characteristics,” Journal of Applied Meteorology, vol. 40, no. 11, pp. 1855–1877, 2001.
[3]
S. Jia, W. Zhu, A. Lü, and T. Yan, “A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China,” Remote Sensing of Environment, vol. 115, no. 12, pp. 3069–3079, 2011.
[4]
G. J. Huffman, R. F. Adler, D. T. Bolvin, and G. Gu, “Improving the global precipitation record: GPCP version 2.1,” Geophysical Research Letters, vol. 36, no. 17, Article ID L17808, 2009.
[5]
C. Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson, “The Tropical Rainfall Measuring Mission (TRMM) sensor package,” Journal of Atmospheric and Oceanic Technology, vol. 15, no. 3, pp. 809–817, 1998.
[6]
A. Y. Hou and G. Skofronick-Jackson, “GPM mission overview and US science status,” in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '13), Melbourne, Australia, 2013.
[7]
D. Harris and E. Foufoula-Georgiou, “Subgrid variability and stochastic downscaling of modeled clouds: effects on radiative transfer computations for rainfall retrieval,” Journal of Geophysical Research D, vol. 106, no. 10, pp. 10349–10362, 2001.
[8]
A. J. Tatem, H. G. Lewis, P. M. Atkinson, and M. S. Nixon, “Super-resolution land cover pattern prediction using a Hopfield neural network,” Remote Sensing of Environment, vol. 79, no. 1, pp. 1–14, 2002.
[9]
G. Kim and A. P. Barros, “Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data,” Remote Sensing of Environment, vol. 83, no. 3, pp. 400–413, 2002.
[10]
Y. H. Kaheil, M. K. Gill, M. McKee, L. A. Bastidas, and E. Rosero, “Downscaling and assimilation of surface soil moisture using ground truth measurements,” IEEE Transactions on Geoscience and Remote Sensing, vol. 46, no. 5, pp. 1375–1384, 2008.
[11]
D. Liu and R. Pu, “Downscaling thermal infrared radiance for subpixel land surface temperature retrieval,” Sensors, vol. 8, no. 4, pp. 2695–2706, 2008.
[12]
G. Wotling, C. Bouvier, J. Danloux, and J.-M. Fritsch, “Regionalization of extreme precipitation distribution using the principal components of the topographical environment,” Journal of Hydrology, vol. 233, no. 1–4, pp. 86–101, 2000.
[13]
D. K. Nykanen and D. Harris, “Orographic influences on the multiscale statistical properties of precipitation,” Journal of Geophysical Research D, vol. 108, no. 8, 2003.
[14]
R. B. Smith and I. Barstad, “A linear theory of orographic precipitation,” Journal of the Atmospheric Sciences, vol. 61, no. 12, pp. 1377–1391, 2004.
[15]
M. G. Badas, R. Deidda, and E. Piga, “Orographic influences in rainfall downscaling,” Advances in Geosciences, vol. 2, pp. 285–292, 2005.
[16]
H. Guan, J. L. Wilson, and H. Xie, “A cluster-optimizing regression-based approach for precipitation spatial downscaling in mountainous terrain,” Journal of Hydrology, vol. 375, no. 3-4, pp. 578–588, 2009.
[17]
W. W. Immerzeel, M. M. Rutten, and P. Droogers, “Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula,” Remote Sensing of Environment, vol. 113, no. 2, pp. 362–370, 2009.
[18]
P. Goovaerts, Geostatistics for Natural Resources Evalution, Applied Geostatistics, Oxford University Press, New York, NY, USA, 1997.
[19]
N. Remy, A. Boucher, and J. Wu, Applied Geostatistics with SGeMS: A User’s Guide, Cambridge University Press, Cambridge, UK, 2009.
[20]
A. Boucher and P. C. Kyriakidis, “Super-resolution land cover mapping with indicator geostatistics,” Remote Sensing of Environment, vol. 104, no. 3, pp. 264–282, 2006.
[21]
X. H. Liu, P. C. Kyriakidis, and M. F. Goodchild, “Population-density estimation using regression and area-to-point residual kriging,” International Journal of Geographical Information Science, vol. 22, no. 4, pp. 431–447, 2008.
[22]
E. Pardo-Iguzquiza, P. M. Atkinson, and M. Chica-Olmo, “DSCOKRI: a library of computer programs for downscaling cokriging in support of remote sensing applications,” Computers & Geosciences, vol. 36, no. 7, pp. 881–894, 2010.
[23]
P. C. Kyriakidis, “A geostatistical framework for area-to-point spatial interpolation,” Geographical Analysis, vol. 36, no. 3, pp. 259–289, 2004.
[24]
P. Goovaerts, “Kriging and semivariogram deconvolution in the presence of irregular geographical units,” Mathematical Geosciences, vol. 40, no. 1, pp. 101–128, 2008.
[25]
A. G. Journel and C. J. Huijbregts, Mining Geostatistics, Academic Press, New York, NY, USA, 1978.
[26]
Y. Liu and A. G. Journel, “A package for geostatistical integration of coarse and fine scale data,” Computers & Geosciences, vol. 35, no. 3, pp. 527–547, 2009.
[27]
A. G. Journel, “Modelling uncertainty and spatial dependence: stochastic imaging,” International Journal of Geographical Information Systems, vol. 10, no. 5, pp. 517–522, 1996.