Spatial and temporal variations in planetary boundary layer height (PBLH) over the Korean Peninsula and its surrounding oceans are investigated using a regional grid model operated at the Korea Meteorological Administration (KMA). Special attention is placed on daily maximum mixing height for evaluation against two radiosonde observation datasets. In order to construct a new high-resolution PBLH database with 3-hour time and 10?km spatial resolution, short-term integrations with the regional model are carried out for a one-year period from June 2010 to May 2011. The resulting dataset is then utilized to explore the seasonal patterns of horizontal PBLH distribution over the peninsula for one year. Frequency distributions as well as monthly and diurnal variations of PBLH at two selected locations are examined. This study reveals specific spatiotemporal structure of boundary layer depth over the Korean Peninsula for the first time at a relatively high-resolution scale. The results are expected to provide insights into the direction for operational tuning and future development in the model boundary layer schemes at KMA. 1. Introduction The diurnally evolving structure of the planetary boundary layer (PBL) for a typical synoptic high-pressure system is described by Stull [1]. The depth of the PBL provides important information for numerical weather prediction (NWP) and atmospheric dispersion models. It has been used as a key parameter in the trigger function for convection in cumulus parameterization schemes in many NWP models (e.g., [2, 3]). Accurate prediction of PBL’s vertical extent is crucial in determining whether harmful gases (e.g., those erupted from a volcano) would reach the ground or not [4]. It affects near-surface atmospheric pollutant concentrations (e.g., [5]), low-level moisture availability, and updraft conditions prior to thundershowers (e.g., [6]). In particular, daytime mixed-layer (ML) height has been regarded as the location of a capping temperature inversion atop the convective boundary layer. Raupach et al. [7] and Denmead et al. [8] formularized the relationship between carbon dioxide concentration and ML depth through entrainment processes. To identify the ML top, there have been several methods for which radiosondes, wind profilers, and ceilometer/light detection and ranging (LIDAR) were utilized (e.g., [9–14]). These kinds of techniques to extract PBLH information have been also applied over the Korean Peninsula to surface flux [15–17], radiosonde [18, 19], LIDAR [20], and wind profiler [21] data. Most of the researchers
References
[1]
R. B. Stull, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Norwell, Mass, USA, 1988.
[2]
S.-Y. Hong and H.-L. Pan, “Nonlocal boundary layer vertical diffusion in a medium-range forecast model,” Monthly Weather Review, vol. 124, no. 10, pp. 2322–2339, 1996.
[3]
S.-H. Shin and K.-J. Ha, “Effects of spatial and temporal variations in PBL depth on a GCM,” Journal of Climate, vol. 20, no. 18, pp. 4717–4732, 2007.
[4]
H. Nagai, H. Terada, and M. Chino, “Relation between nasty smell at Kanto area on 28 Aug 2000 and eruption at Miyake Island: examination by numerical simulation,” Tenki, vol. 48, pp. 227–230, 2001 (Japanese).
[5]
D. J. Jacob, Introduction to Atmospheric Chemistry, Princeton University Press, 1999.
[6]
R. Latha and B. S. Murthy, “Boundary layer signatures of consecutive thunderstorms as observed by Doppler sodar over western India,” Atmospheric Research, vol. 99, no. 2, pp. 230–240, 2011.
[7]
M. R. Raupach, O. T. Denmead, and F. X. Dunin, “Challenges in linking atmospheric CO2 concentrations to fluxes at local and regional scales,” Australian Journal of Botany, vol. 40, no. 4-5, pp. 697–716, 1992.
[8]
O. T. Denmead, M. R. Raupach, F. X. Dunin, H. A. Cleugh, and R. Leuning, “Boundary layer budgets for regional estimates of scalar fluxes,” Global Change Biology, vol. 2, no. 3, pp. 255–264, 1996.
[9]
G. C. Holzworth, “Estimates of mean maximum mixing depths in the contiguous United States,” Monthly Weather Review, vol. 92, pp. 235–242, 1963.
[10]
J. L. Heffter, “Transport layer depth calculations,” in Proceedings of the 2nd Joint Conference on Applications of Air Pollution Meteorology, New Orleans, La, USA, 1980.
[11]
W. M. Angevine, A. B. White, and S. K. Avery, “Boundary-layer depth and entrainment zone characterization with a boundary-layer profiler,” Boundary-Layer Meteorology, vol. 68, no. 4, pp. 375–385, 1994.
[12]
P. Seibert, F. Beyrich, S.-E. Gryning, S. Joffre, A. Rasmussen, and P. Tercier, “Review and intercomparison of operational methods for the determination of the mixing height,” Atmospheric Environment, vol. 34, no. 7, pp. 1001–1027, 2000.
[13]
S. Liu and X. Z. Liang, “Observed diurnal cycle climatology of planetary boundary layer height,” Journal of Climate, vol. 23, no. 21, pp. 5790–5809, 2010.
[14]
M. Haeffelin, F. Angelini, Y. Morille et al., “Evaluation of mixing-height retrievals from automatic profiling lidars and ceilometers in view of future integrated networks in Europe,” Boundary-Layer Meteorology, vol. 143, no. 1, pp. 49–75, 2012.
[15]
S.-U. Park and I.-H. Yoon, “Estimation of atmospheric boundary layer parameters using routinely available meteorological data,” Journal of the Korean Meteorological Society, vol. 27, pp. 32–54, 1991.
[16]
J.-B. Lee, “A study on the air pollution potential in the central part of Korea,” Journal of Korea Air Pollution Research Association, vol. 7, pp. 41–47, 1991 (Korean).
[17]
Y.-G. Kim, “Calculation of the convective mixed layer by estimation of sensible heat flux,” Journal of the Korean Environmental Sciences Society, vol. 7, pp. 639–645, 1998 (Korean).
[18]
J.-S. Choi and S.-O. Baek, “An approach to estimate daily maximum mixing height (DMMH) in Pohang, Osan, and Kwangju areas—analysis of 10 years data from 1983 to 1992,” Journal of Korea Air Pollution Research Association, vol. 14, pp. 379–385, 1998 (Korean).
[19]
S.-J. Lee, J. Kim, and C.-H. Cho, “An automated monitoring of atmospheric mixing height from routine radiosonde profiles over South Korea using a web-based data transfer method,” Environmental Monitoring and Assessment. In press.
[20]
S.-C. Yoon, J.-G. Won, S.-W. Kim, and G.-M. Lim, “Measurement of mixed layer height using Lidar,” in Proceedings of Korean Society for Atmospheric Environment, pp. 436–437, 1999.
[21]
S.-J. Lee and H. Kawai, “Mixing depth estimation from operational JMA and KMA wind-profiler data and its preliminary applications: examples from four selected sites,” Journal of the Meteorological Society of Japan, vol. 89, no. 1, pp. 15–28, 2011.
[22]
K.-D. Min, S.-H. Kim, K.-E. Kim, and B.-H. Kwon, “Seasonal and local characteristics of atmospheric mixed layer over Kyungpook Province,” Journal of Korean Meteorological Society, vol. 35, pp. 539–548, 1999.
[23]
E. H. Berbery and E. A. Collini, “Springtime precipitation and water vapor flux over southeastern South America,” Monthly Weather Review, vol. 128, no. 5, pp. 1328–1346, 2000.
[24]
W. C. Skamarock, J. B. Klemp, J. Dudhia et al., “A Description of the Advanced Research WRF Version 3,” NCAR Technical Note NCAR/TN-475+STR, National Center for Atmospheric Research, Boulder, Colo, USA, 2008, http://www.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.
[25]
I.-H. Cho, H.-D. Yoo, and J.-O. Lim, “Implementation and test run of the next generation regional forecast model (KWRF),” in Proceedings of Korean Meteorological Society, pp. 368–369, 2005 (Korean).
[26]
J. Dudhia, “Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model,” Journal of the Atmospheric Sciences, vol. 46, no. 20, pp. 3077–3107, 1989.
[27]
E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” Journal of Geophysical Research D, vol. 102, no. 14, pp. 16663–16682, 1997.
[28]
S.-Y. Hong and J.-O. Lim, “The WRF single-moment 6-class microphysics scheme (WSM6),” Journal of the Korean Meteorological Society, vol. 42, pp. 129–151, 2006.
[29]
J. S. Kain and J. Kain, “The Kain-Fritsch convective parameterization: an update,” Journal of Applied Meteorology, vol. 43, no. 1, pp. 170–181, 2004.
[30]
S.-Y. Hong, Y. Noh, and J. Dudhia, “A new vertical diffusion package with an explicit treatment of entrainment processes,” Monthly Weather Review, vol. 134, no. 9, pp. 2318–2341, 2006.
[31]
A. S. Monin and A. M. Obukhov, “Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery,” Trudy Geofizicheskogo Instituta, Akademiya Nauk SSSR, vol. 24, no. 151, pp. 163–187, 1954.
[32]
Z.I. Janji?, “The surface layer in the NCEP eta model,” in Proceedings of the 11th Conference on Numerical Weather Prediction, Norfolk, Va, USA, August 1996.
[33]
Z.I. Janji?, “Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model,” NCEP Office Note 437, 2002.
[34]
F. Chen and J. Dudhia, “Coupling and advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system—part I: model implementation and sensitivity,” Monthly Weather Review, vol. 129, no. 4, pp. 569–585, 2001.
[35]
D.-K. Lee, D.-Y. Eom, J.-W. Kim, and J.-B. Lee, “High-resolution summer rainfall prediction in the JHWC real-time WRF system,” Asia-Pacific Journal of Atmospheric Sciences, vol. 46, no. 3, pp. 341–353, 2010.
[36]
H.-Y. Choi, J.-H. Ha, D.-K. Lee, and Y.-H. Kuo, “Analysis and simulation of mesoscale convective systems accompanying heavy rainfall: the goyang case,” Asia-Pacific Journal of Atmospheric Sciences, vol. 47, no. 3, pp. 265–279, 2011.
[37]
S.-H. Jung, E.-S. Im, and S.-O. Han, “The effect of topography and sea surface temperature on heavy snowfall in the Yeongdong region: a case study with high resolution WRF simulation,” Asia-Pacific Journal of Atmospheric Sciences, vol. 48, pp. 259–273, 2012.
[38]
S.-J. Lee, D. F. Parrish, S.-Y. Park et al., “Effects of 2-m air temperature assimilation and a new near-surface observation operator on the NCEP gridpoint statistical-interpolation system,” Asia-Pacific Journal of Atmospheric Sciences, vol. 47, no. 4, pp. 353–376, 2011.
[39]
G. Svensson, A. A. M. Holtslag, V. Kumar et al., “Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single-column models: the second GABLS experiment,” Boundary-Layer Meteorology, vol. 140, no. 2, pp. 177–206, 2011.
[40]
H. H. Shin and S.-Y. Hong, “Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99,” Boundary-Layer Meteorology, vol. 139, no. 2, pp. 261–281, 2011.
[41]
S. Berman, J.-Y. Ku, and S. T. Rao, “Spatial and temporal variation in the mixing depth over the Northeastern United States during the summer of 1995,” Journal of Applied Meteorology, vol. 38, no. 12, pp. 1661–1673, 1999.
[42]
Y.-H. Kim and J.-J. Baik, “Maximum urban heat island intensity in Seoul,” Journal of Applied Meteorology, vol. 41, pp. 651–659, 2002.
[43]
S.-H. Lee and H.-D. Kim, “Effects of regional warming due to urbanization on daytime local circulations in a complex basin of the Daegu metropolitan area, Korea,” Journal of Applied Meteorology and Climatology, vol. 47, no. 5, pp. 1427–1441, 2008.
[44]
J.-H. Kim and I.-U. Chung, “Study on mechanisms and orographic effect for the springtime downslope windstorm over the Yeongdong region,” Atmosphere, vol. 16, pp. 67–83, 2006 (Korean).
[45]
S.-J. Lee and Y.-C. Kim, “A numerical forecast and verification of the aircraft turbulence observed over South Korea,” Asia-Pacific Journal of Atmospheric Sciences, vol. 38, pp. 493–507, 2002 (Korean).
[46]
M. B. Richman, “Rotation of principal components,” Journal of Climatology, vol. 6, no. 3, pp. 293–335, 1986.
[47]
S. J. Greybush, S. E. Haupt, and G. S. Young, “The regime dependence of optimally weighted ensemble model consensus forecasts of surface temperature,” Weather and Forecasting, vol. 23, no. 6, pp. 1146–1161, 2008.