Extratropical cyclones exert a large socioeconomic impact. It is therefore important to assess their interannual variability. We generate cyclone tracks from the National Center for Environmental Prediction’s Reanalysis I and the European Centre for Medium Range Prediction ERA-40 reanalysis datasets. To investigate the interannual variability of cyclone tracks, we compare the effects of El Ni?o, the North Atlantic Oscillation (NAO), the Indian Ocean Dipole (IOD), and the Pacific North American Pattern (PNA) on cyclone tracks. Composite analysis shows similar results for the impacts of El Ni?o, NAO, and the PNA on NH storm tracks. Although it is encouraging, we also found regional differences when comparing reanalysis datasets. The results for the IOD suggested a wave-like alteration of cyclone frequency across the northern US/Canada possibly related to Rossby wave propagation. Partial correlation demonstrates that although El Ni?o affects cyclone frequency in the North Pacific and along the US east coast, its impact on the North Pacific is accomplished via the PNA. Similarly, the PNA’s impact on US east coast storms is modulated via El Ni?o. In contrast, the impacts of the NAO extend as far west as the North Pacific and are not influenced by either the PNA or El Ni?o. 1. Introduction A key issue in assessing present and future climate is in examining the climatology, variability, and trends in the characteristics of extratropical cyclones. The history of cyclone tracks research has two preferred methods to define cyclones. The first is the Eulerian method, which uses band-passed 500?hPa height field and strongest wave activity to define a cyclone (Blackmon [1], Blackmon et al. [2], Wallace et al. [3]), Hoskins and Valdes [4], Chang and Fu [5], Chang [6], Rao et al. [7], C. S. Frederiksen and J. S. Frederiksen [8], and Nakamura and Shimpo [9]). In contrast, a Lagrangian approach tracks cyclones by utilizing diagnostics such as minimum sea-level pressure (MSLP) (Petterson [10], Klein [11], Mather et al. [12], Reitan [13], Zishka and Smith [14], Sanders and Gyakum [15], Whittaker and Horn [16], Lambert [17], Murray and Simmonds [18], Chen et al. [19], Hirsch et al. [20], Eichler and Higgins [21], Changnon et al. [22], and Tilinina et al. [23]) or 850?hPa vorticity (Hodges [24–27], Hoskins et al. [28], Mesquita et al. [29], and Hodges et al. [30]). Advantages and disadvantages of cyclone methodologies depend on the application of the research. For example, Hodges et al. [30] note that 850?hPa vorticity becomes quite noisy at high-resolution requiring a
References
[1]
M. L. Blackmon, “A climatological spectral study of the 500 mb geopotential height of the Northern Hemisphere,” Journal of the Atmospheric Sciences, vol. 33, no. 8, pp. 1607–1623, 1976.
[2]
M. L. Blackmon, J. M. Wallace, N. C. Lau, and S. L. Mullen, “An observational study of the Northern Hemisphere wintertime circulation,” Journal of the Atmospheric Sciences, vol. 34, no. 7, pp. 1040–1053, 1977.
[3]
J. M. Wallace, G.-H. L. Gyu-Ho Lim, and M. L. Blackmon, “Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides,” Journal of the Atmospheric Sciences, vol. 45, no. 3, pp. 439–462, 1988.
[4]
B. J. Hoskins and P. J. Valdes, “On the existence of storm-tracks,” Journal of the Atmospheric Sciences, vol. 47, no. 15, pp. 1854–1864, 1990.
[5]
E. K. M. Chang and Y. Fu, “Using mean flow change as a proxy to infer interdecadal storm track variability,” Journal of Climate, vol. 16, no. 13, pp. 2178–2196, 2003.
[6]
E. K. M. Chang, “Are the Northern Hemisphere winter storm tracks significantly correlated?” Journal of Climate, vol. 17, no. 21, pp. 4230–4244, 2004.
[7]
V. B. Rao, A. M. C. do Carmo, and S. H. Franchito, “Seasonal variations in the Southern Hemisphere storm tracks and associated wave propagation,” Journal of the Atmospheric Sciences, vol. 59, no. 6, pp. 1029–1040, 2002.
[8]
C. S. Frederiksen and J. S. Frederiksen, “A theoretical model of Australian northwest cloudband disturbances and Southern Hemisphere storm tracks: the role of SST anomalies,” Journal of the Atmospheric Sciences, vol. 53, no. 10, pp. 1410–1432, 1996.
[9]
H. Nakamura and A. Shimpo, “Seasonal variations in the Southern Hemisphere cyclone tracks and jet stream as revealed in a reanalysis dataset,” Journal of Climate, vol. 17,, pp. 1828–1844, 2004.
[10]
S. Petterson, “Some aspects of the general circulation of the atmosphere,” in Centenary Proceedings of the Royal Meteorological Society, pp. 120–155, Royal Meteorological Society, London, UK, 1950.
[11]
W. H. Klein, “Principal tracks and mean frequencies of cyclones and anticyclones in the Northern Hemisphere,” Research Paper #40, U.S. Weather Bureau, Washington, DC, USA, 1957.
[12]
J. Mather, H. Adams III, and G. Yoshioka, “Coastal storms of the Eastern United States,” Journal of Applied Meteorology, vol. 3, pp. 693–706, 1964.
[13]
C. Reitan, “Frequencies of cyclones and cyclogenesis for North America, 1951–1970,” Monthly Weather Review, vol. 102, pp. 861–868, 1974.
[14]
K. M. Zishka and P. J. Smith, “The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July 1950–1977,” Monthly Weather Review, vol. 108, no. 4, pp. 387–401, 1980.
[15]
F. Sanders and J. R. Gyakum, “Synoptic-dynamic climatology of the “Bomb” (extratropical surface cyclone),” Monthly Weather Review, vol. 108, no. 10, pp. 1589–1606, 1980.
[16]
L. M. Whittaker and L. H. Horn, “Geographical and seasonal distribution of North American cyclogenesis, 1958–1977,” Monthly Weather Review, vol. 109, no. 11, pp. 2312–2322, 1981.
[17]
S. J. Lambert, “A cyclone climatology of the Canadian climate centre general circulation model,” Journal of Climate, vol. 1, pp. 109–115, 1988.
[18]
R. J. Murray and I. Simmonds, “A numerical scheme for tracking cyclone centres from digital data. Part I: development and operation of the scheme,” Australian Meteorological Magazine, vol. 39, no. 3, pp. 155–166, 1991.
[19]
S.-J. Chen, Y.-H. Kuo, P.-Z. Zhang, and Q.-F. Bai, “Synoptic climatology of cyclogenesis over east Asia, 1958–1987,” Monthly Weather Review, vol. 119, no. 6, pp. 1407–1418, 1991.
[20]
M. E. Hirsch, A. T. DeGaetano, and S. J. Colucci, “An East Coast winter storm climatology,” Journal of Climate, vol. 14, no. 5, pp. 882–899, 2001.
[21]
T. Eichler and W. Higgins, “Climatology and ENSO-related variability of North American extratropical cyclone activity,” Journal of Climate, vol. 19, no. 10, pp. 2076–2093, 2006.
[22]
D. Changnon, C. Merinsky, and M. Lawson, “Climatology of surface cyclone tracks associated with large central and Eastern U.S. Snowstorms, 1950–2000,” Monthly Weather Review, vol. 136, no. 8, pp. 3193–3202, 2008.
[23]
N. Tilinina, S. K. Gulev, I. Rudeva, and P. Koltermann, “Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses,” Journal of Climate, vol. 26, pp. 6419–6438, 2013.
[24]
K. I. Hodges, “A general method for tracking analysis and its application to meteorological data,” Monthly Weather Review, vol. 122, no. 11, pp. 2573–2586, 1994.
[25]
K. I. Hodges, “Feature tracking on the unit sphere,” Monthly Weather Review, vol. 123, no. 12, pp. 3458–3465, 1995.
[26]
K. I. Hodges, “Spherical nonparametric estimators applied to the UGAMP model integration for AMIP,” Monthly Weather Review, vol. 124, no. 12, pp. 2914–2932, 1996.
[27]
K. I. Hodges, “Adaptive constraints for feature tracking,” Monthly Weather Review, vol. 127, no. 6, pp. 1362–1373, 1999.
[28]
B. J. Hoskins, J. Boyle, and C. Thorncroft, “A comparison of recent reanalysis datasets using objective feature tracking: cyclone tracks and tropical easterly waves,” Monthly Weather Review, vol. 131, pp. 2012–2037, 2003.
[29]
M. D. S. Mesquita, D. E. Atkinson, and K. I. Hodges, “Characteristics and variability of storm tracks in the North Pacific, Bering Sea, and Alaska,” Journal of Climate, vol. 23, no. 2, pp. 294–311, 2010.
[30]
K. I. Hodges, R. W. Lee, and L. Bengtsson, “A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25,” Journal of Climate, vol. 24, no. 18, pp. 4888–4906, 2011.
[31]
M. G. Akperov and I. I. Mokhov, “A comparative analysis of the method of extratropical cyclone identification,” Izvestiya, Atmospheric and Ocean Physics, vol. 46, no. 5, pp. 574–590, 2010.
[32]
M. C. Serreze, “Climatological aspects of cyclone development and decay in the arctic,” Atmosphere-Ocean, vol. 33, no. 1, pp. 1–23, 1995.
[33]
U. Neu, M. G. Akperov, N. Bellenbaum, et al., “IMILAST—a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties,” Bulletin of the American Meteorological Society, vol. 94, pp. 529–547, 2013.
[34]
M. D. S. Mesquita, N. Gunnar Kvamst?, A. Sorteberg, and D. E. Atkinson, “Climatological properties of summertime extra-tropical storm tracks in the Northern Hemisphere,” Tellus, Series A, vol. 60, no. 3, pp. 557–569, 2008.
[35]
S. R. Leonard, J. Turner, and A. Van Der Wal, “An assessment of three automatic depression tracking schemes,” Meteorological Applications, vol. 6, no. 2, pp. 173–183, 1999.
[36]
J. M. Wallace and D. S. Gutzler, “Teleconnections in the geopotential height field during the Northern Hemisphere winter,” Monthly Weather Review, vol. 109, no. 4, pp. 784–812, 1981.
[37]
J. D. Horel and J. M. Wallace, “Planetary-scale atmospheric phenomena associated with the Southern Oscillation,” Monthly Weather Review, vol. 109, no. 4, pp. 813–829, 1981.
[38]
J. Noel and D. Changnon, “A pilot study examining U.S. winter cyclone frequency patterns associated with three ENSO parameters,” Journal of Climate, vol. 11, no. 8, pp. 2152–2159, 1998.
[39]
S. K. Gulev, O. Zolina, and S. Grigoriev, “Extratropical cycone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data,” Climate Dynamics, vol. 17, no. 10, pp. 795–809, 2001.
[40]
J. W. Hurrell, “Influence of variations in extratropical wintertime teleconnections on Northern Hemisphere temperature,” Geophysical Research Letters, vol. 23, no. 6, pp. 665–668, 1996.
[41]
J. W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, “An overview of the North Atlantic oscillation,” in The North Atlantic Oscillation: Climatic Significance and Environmental Impact, vol. 134 of Geophysical Monograph, pp. 1–35, American Geophysical Union, 2003.
[42]
J. A. Bradbury, B. D. Keim, and C. P. Wake, “The influence of regional storm tracking and teleconnections on winter precipitation in the northeastern United States,” Annals of the Association of American Geographers, vol. 93, no. 3, pp. 544–556, 2003.
[43]
N. H. Saji, B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, “A dipole mode in the tropical Indian ocean,” Nature, vol. 401, no. 6751, pp. 360–363, 1999.
[44]
K. Ashok, Z. Guan, and T. Yamagata, “Influence of the Indian Ocean Dipole on the Australian winter rainfall,” Geophysical Research Letters, vol. 30, no. 15, pp. 1–6, 2003.
[45]
L. Na, H. Honxia, M. Jinzhong, H. Feng, and B. Hongcum, “Spatial teleconnection field,” Progress in Natural Science, vol. 15, pp. 1143–1147, 2005.
[46]
K. Ashok, H. Nakamura, and T. Yamagata, “Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere storm-track activity during austral winter,” Journal of Climate, vol. 20, no. 13, pp. 3147–3163, 2007.
[47]
N. Liu, H.-X. Chen, and L.-G. Lü, “Teleconnection of IOD signal in the upper troposphere over southern high latitudes,” Journal of Oceanography, vol. 63, no. 1, pp. 155–157, 2007.
[48]
N. H. Saji and T. Yamagata, “Possible impacts of Indian Ocean Dipole mode events on global climate,” Climate Research, vol. 25, no. 2, pp. 151–169, 2003.
[49]
T. Yamagata, J.-J. Luo, S. Masson, M. R. Jury, and S. A. Rao, “The coupled ocean-atmosphere variability in the tropical Indian Ocean,” in Earth's Climate: The Ocean-Atmosphere Interaction, vol. 147 of Geophysical Monograph, pp. 189–211, American Geophysical Union, 2004.
[50]
J. Yang, Q. Liu, Z. Liu, L. Wu, and F. Huang, “Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection,” Geophysical Research Letters, vol. 36, no. 19, Article ID L19705, 2009.
[51]
H. Annamalai, H. Okajima, and M. Watanabe, “Possible impact of the Indian Ocean SST on the Northern Hemisphere circulation during El Ni?o,” Journal of Climate, vol. 20, no. 13, pp. 3164–3189, 2007.
[52]
J. Min, Q. Zhou, N. Liu, Q. Gao, and Z. Guan, “Teleconnection mode between IOD and Northern Hemisphere tropospheric circulation and its mechanism,” Meteorology and Atmospheric Physics, vol. 100, no. 1-4, pp. 207–215, 2008.
[53]
D. Dee, P. Berrisford, M. G. Bosilovich, et al., “The use of reanalysis data for monitoring the state of the climate [in “State of the Climate in 2010”],” Bulletin of the American Meteorological Society, vol. 92, no. 6, pp. S34–S35, 2011.
[54]
M. C. Serreze, F. Carse, R. G. Barry, and J. C. Rogers, “Icelandic low cyclone activity: climatological features, linkages with the NAO, and relationships with recent changes in the Northern Hemisphere circulation,” Journal of Climate, vol. 10, no. 3, pp. 453–464, 1997.
[55]
E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996.
[56]
S. M. Uppala, P. W. K?llberg, A. J. Simmons, et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 612, pp. 2961–3012, 2005.
[57]
J. G. Pinto, M. Reyers, and U. Ulbrich, “The variable link between PNA and NAO in observations and in multi-century CGCM simulations,” Climate Dynamics, vol. 36, no. 1, pp. 337–354, 2011.
[58]
V. E. Kousky and R. W. Higgins, “An alert classification system for monitoring and assessing the ENSO cycle,” Weather and Forecasting, vol. 22, no. 2, pp. 353–371, 2007.
[59]
P. D. Jones, T. Jonsson, and D. Wheeler, “Extension to the North Atlantic Oscillation using early instrumental pressure observations from gibraltar and south-west Iceland,” International Journal of Climatology, vol. 17, no. 13, pp. 1433–1450, 1997.
[60]
X. Bai, J. Wang, C. Sellinger, A. Clites, and R. Assel, “Interannual variability of Great Lakes ice cover and its relationship to NAO and ENSO,” Journal of Geophysical Research: Oceans, vol. 117, no. 3, Article ID C03002, 2012.
[61]
J. C. Rogers, “The association between the North Atlantic Oscillation and the Southern Oscillation in the Northern Hemisphere,” Monthly Weather Review, vol. 112, no. 10, pp. 1999–2015, 1984.
[62]
D. Luo, Y. Diao, and S. B. Feldstein, “The variability of the Atlantic storm track and the North Atlantic Oscillation: a link between intraseasonal and interannual variability,” Journal of the Atmospheric Sciences, vol. 68, no. 3, pp. 577–601, 2011.
[63]
K. Walter and H. F. Graf, “The North Atlantic variability structure, storm tracks, and precipitation depending on the polar vortex strength,” Atmospheric Chemistry and Physics, vol. 5, no. 1, pp. 239–248, 2005.
[64]
R. Seager, Y. Kushnir, J. Nakamura, M. Ting, and N. Naik, “Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10,” Geophysical Research Letters, vol. 37, no. 14, Article ID L14703, 2010.
[65]
D. Small, S. Islam, and M. Barlow, “The impact of a hemispheric circulation regime on fall precipitation over North America,” Journal of Hydrometeorology, vol. 11, no. 5, pp. 1182–1189, 2010.
[66]
R. J. Greatbatch, J. Lu, and K. A. Peterson, “Nonstationary impact of ENSO on Euro-Atlantic winter climate,” Geophysical Research Letters, vol. 31, no. 2, pp. L02208–4, 2004.