全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Comparison of Southern Hemisphere Cyclone Track Climatology and Interannual Variability in Coarse-Gridded Reanalysis Datasets

DOI: 10.1155/2013/891260

Full-Text   Cite this paper   Add to My Lib

Abstract:

Southern Hemisphere (SH) extratropical cyclones have received less study than their Northern Hemisphere (NH) counterparts. Generating SH cyclone tracks from global reanalysis datasets is problematic due to data reliability, especially prior to 1979. It is therefore prudent to compare the climatology and variability of SH cyclone tracks from different reanalysis datasets. We generate cyclone track frequency and intensity climatologies from three reanalysis datasets: The National Center for Environmental Prediction’s Reanalysis I and Reanalysis II datasets and the European Centre for Medium Range Weather Forecasts ERA-40 dataset. Our results show that ERA-40 produces more intense cyclones in the SH active cyclone region compared to NCEP reanalyses. More intense storms are also found in the SH active cyclone region in NCEP reanalyses data post-1979 reflecting the positive trend in the AAO in the past few decades. When evaluating interannual variability, our results show Rossby wave trains including the Pacific South American (PSA) and the East Indian Ocean pattern in response to anomalous heating linked to El Ni?o and the Indian Ocean Dipole (IOD), respectively. Response to the AAO shows a robust annular structure for cyclone track frequency, but not intensity suggesting a weak relationship between cyclone frequency and cyclone intensity. 1. Introduction Extratropical cyclones are an important manifestation of the Southern Hemisphere (SH) general circulation and are associated with serious socioeconomic impacts. For example, the economic costs associated with coastal cyclones in South Africa are quite large as demonstrated by infrastructure costs associated with a 2007 cyclone that resulted in R100 million along the Durban coast [1]. While cyclone tracks for the SH have been less studied than the NH, several studies have been conducted. These include those that detect cyclones in the upper levels (e.g., 300?hPa, 500?hPa) using band-passed or high-pass filtered data (e.g., Trenberth [2], J. S. Frederiksen and C. S. Frederiksen [3], Kidson and Sinclair [4], C. S. Frederiksen and J. S. Frederiksen [5], Berbery and Vera [6], Rao et al. [7], Inatsu and Hoskins [8], Nakamura and Shimpo [9], Solman and Menéndez [10], Ashok et al. [11], and Carmo and de Souza [12]). Other studies use a Lagrangian method to determine cyclones from the low levels (e.g., sea level pressure (SLP)) such as Lim and Simmonds [13], Pezza et al. [14], Pezza et al. [15], Mendes et al. [16], and Yuan et al. [17]. Hoskins and Hodges [18] utilized both Eularian and Lagrangian methods in their

References

[1]  G. Midgley, R. Chapman, P. Mukheibir et al., “Impacts, vulnerability and adaptation in key South African Sectors,” LTMS Input Report 5, Energy Research Centre, University of Cape Town, 2007.
[2]  K. E. Trenberth, “Storm tracks in the Southern Hemisphere,” Journal of the Atmospheric Sciences, vol. 48, no. 19, pp. 2159–2178, 1991.
[3]  J. S. Frederiksen and C. S. Frederiksen, “Southern Hemisphere storm tracks, blocking, and low-frequency anomalies in a primitive equation model,” Journal of the Atmospheric Sciences, vol. 50, no. 18, pp. 3148–3163, 1993.
[4]  J. W. Kidson and M. R. Sinclair, “The influences of persistent anomalies on Southern Hemisphere storm tracks,” Journal of Climate, vol. 8, no. 8, pp. 1938–1950, 1995.
[5]  C. S. Frederiksen and J. S. Frederiksen, “A theoretical model of Australian northwest cloudband disturbances and Southern Hemisphere storm tracks: the role of SST anomalies,” Journal of the Atmospheric Sciences, vol. 53, no. 10, pp. 1410–1432, 1996.
[6]  E. H. Berbery and C. S. Vera, “Characteristics of the Southern Hemisphere winter storm track with filtered and unfiltered data,” Journal of the Atmospheric Sciences, vol. 53, no. 3, pp. 468–481, 1996.
[7]  V. B. Rao, A. M. C. do Carmo, and S. H. Franchito, “Seasonal variations in the Southern Hemisphere storm tracks and associated wave propagation,” Journal of the Atmospheric Sciences, vol. 59, no. 6, pp. 1029–1040, 2002.
[8]  M. Inatsu and B. J. Hoskins, “The zonal asymmetry of the Southern Hemisphere winter storm track,” Journal of Climate, vol. 17, no. 24, pp. 4882–4892, 2004.
[9]  H. Nakamura and A. Shimpo, “Seasonal variations in the Southern Hemisphere cyclone tracks and jet stream as revealed in a reanalysis dataset,” Journal of Climate, vol. 17, no. 1, pp. 1828–1844, 2004.
[10]  S. A. Solman and C. G. Menéndez, “ENSO-related variability of the Southern Hemisphere winter storm track over the Eastern Pacific-Atlantic sector,” Journal of the Atmospheric Sciences, vol. 59, no. 13, pp. 2128–2140, 2002.
[11]  K. Ashok, H. Nakamura, and T. Yamagata, “Impacts of ENSO and Indian Ocean dipole events on the Southern Hemisphere storm-track activity during austral winter,” Journal of Climate, vol. 20, no. 13, pp. 3147–3163, 2007.
[12]  A. M. C. Carmo and E. B. de Souza, “The role of the sea surface temperature anomalies on the Storm Track behaviour during Southern Hemisphere summer,” Journal of Coastal Research, no. 56, pp. 909–912, 2009, (Proceedings of the 10th International Coastal Symposium), Lisbon, Portugal.
[13]  E. Lim and I. Simmonds, “Southern hemisphere winter extratropical cyclone characteristics and vertical organization observed with the ERA-40 data in 1979–2001,” Journal of Climate, vol. 20, no. 11, pp. 2675–2690, 2007.
[14]  A. B. Pezza, I. Simmonds, and J. A. Renwick, “Southern hemisphere cyclones and anticyclones: recent trends and links with decadal variability in the Pacific Ocean,” International Journal of Climatology, vol. 27, no. 11, pp. 1403–1419, 2007.
[15]  A. B. Pezza, T. Durrant, I. Simmonds, and I. Smith, “Southern hemisphere synoptic behavior in extreme phases of SAM, ENSO, sea ice extent, and Southern Australia rainfall,” Journal of Climate, vol. 21, no. 21, pp. 5566–5584, 2008.
[16]  D. Mendes, E. P. Souza, J. A. Marengo, and M. C. D. Mendes, “Climatology of extratropical cyclones over the South American-southern oceans sector,” Theoretical and Applied Climatology, vol. 100, no. 3-4, pp. 239–250, 2010.
[17]  X. Yuan, J. Patoux, and C. Li, “Satellite-based midlatitude cyclone statistics over the Southern Ocean: 2. Tracks and surface fluxes,” Journal of Geophysical Research D, vol. 114, no. 4, Article ID D04106, 2009.
[18]  B. J. Hoskins and K. I. Hodges, “A new perspective on Southern Hemisphere storm tracks,” Journal of Climate, vol. 18, no. 20, pp. 4108–4129, 2005.
[19]  U. Neu, M. G. Akperov, N. Bellenbaum, et al., “IMILAST: a community effort to intercompare extratropical cyclone detection and tracking algorithms: assessing method-related uncertainties,” Bulletin of the American Meteorological Society, vol. 94, pp. 529–547, 2013.
[20]  M. G. Bosilovich, J. Kennedy, D. Dee, and A. O'Neill, On the Reprocessing and Reanalysis of Observations for Climate, WCRP Position Paper, Version 1. 1, WCRP, 2011.
[21]  L. Bengtsson, S. Hagemann, and K. I. Hodges, “Can climate trends be calculated from reanalysis data?” Journal of Geophysical Research D, vol. 109, no. 11, Article ID D11111, 8 pages, 2004.
[22]  E. Andersson, P. Bauer, A. Beljaars et al., “Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system,” Bulletin of the American Meteorological Society, vol. 86, pp. 387–402, 2005.
[23]  J. Chen, A. D. Del Genio, B. E. Carlson, and M. G. Bosilovich, “The spatiotemporal structure of twentieth-century climate variations in observations and reanalyses. Part I: long-term trend,” Journal of Climate, vol. 21, no. 11, pp. 2611–2633, 2008.
[24]  R. B. Rood and M. G. Bosilovich, “Reanalysis: data assimilation for scientific investigation of climate,” in Data Assimilation: Making Sense of Observations, W. A. Lahoz, B. Khattatov, and R. Menard, Eds., Springer, 2010.
[25]  K. I. Hodges, B. J. Hoskins, J. Boyle, and C. Thorncroft, “A comparison of recent reanalysis datasets using objective feature tracking: cyclone tracks and tropical easterly waves,” Monthly Weather Review, vol. 131, pp. 2012–2037, 2003.
[26]  K. I. Hodges, R. W. Lee, and L. Bengtsson, “A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25,” Journal of Climate, vol. 24, no. 18, pp. 4888–4906, 2011.
[27]  H. Nakamura and T. Sampe, “Trapping of synoptic-scale disturbances into the North-Pacific subtropical jet core in midwinter,” Geophysical Research Letters, vol. 29, no. 16, p. 1761, 2002.
[28]  H. Nakamura, T. Izumi, and T. Sampe, “Interannual and decadal modulations recently observed in the Pacific storm track activity and èast Asian winter monsoon,” Journal of Climate, vol. 15, no. 14, pp. 1855–1874, 2002.
[29]  K. E. Trenberth, G. W. Branstator, D. Karoly, A. Kumar, N. Lau, and C. Ropelewski, “Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures,” Journal of Geophysical Research C, vol. 103, no. 7, pp. 14291–14324, 1998.
[30]  B. Bhaskaran and A. B. Mullan, “El Ni?o-related variations in the southern Pacific atmospheric circulation: model versus observations,” Climate Dynamics, vol. 20, no. 2-3, pp. 229–239, 2003.
[31]  W. Cai, P. van Rensch, T. Cowan, and H. H. Hendon, “Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall,” Journal of Climate, vol. 24, no. 15, pp. 3910–3923, 2011.
[32]  K. C. Mo and R. W. Higgins, “The Pacific South American modes and the tropical intraseasonal oscillation,” Monthly Weather Review, vol. 126, pp. 1581–1596, 1998.
[33]  R. D. Garreaud and D. S. Battisti, “Interannual (ENSO) and interdecadal (ENSO-like) variability in the Southern Hemisphere tropospheric circulation,” Journal of Climate, vol. 12, no. 7, pp. 2113–2123, 1999.
[34]  E. DeWeaver and S. Nigam, “On the forcing of ENSO teleconnections by anomalous heating and cooling,” Journal of Climate, vol. 17, pp. 3225–3235, 2004.
[35]  N. H. Saji, B. N. Goswami, P. N. Vinayachandran, and T. Yamagata, “A dipole mode in the tropical Indian ocean,” Nature, vol. 401, no. 6751, pp. 360–363, 1999.
[36]  N. H. Saji and T. Yamagata, “Possible impacts of Indian Ocean Dipole mode events on global climate,” Climate Research, vol. 25, no. 2, pp. 151–169, 2003.
[37]  K. Ashok, Z. Guan, and T. Yamagata, “Influence of the Indian Ocean Dipole on the Australian winter rainfall,” Geophysical Research Letters, vol. 30, no. 15, p. 182, 2003.
[38]  C. J. C. Reason and M. Rouault, “Links between the Antarctic Oscillation and winter rainfall over western South Africa,” Geophysical Research Letters, vol. 32, no. 7, Article ID L07705, 2005.
[39]  E. Kalnay, M. Kanamitsu, R. Kistler et al., “The NCEP/NCAR 40-year reanalysis project,” Bulletin of the American Meteorological Society, vol. 77, no. 3, pp. 437–471, 1996.
[40]  R. Kistler, E. Kalnay, W. Collins et al., “The NCEP-NCAR 50-year reanalysis: monthly means CD-ROM and documentation,” Bulletin of the American Meteorological Society, vol. 82, no. 2, pp. 247–267, 2001.
[41]  M. Kanamitsu, W. Ebisuzaki, J. Woollen et al., “NCEP-DOE AMIP-II reanalysis (R-2),” Bulletin of the American Meteorological Society, vol. 83, no. 11, pp. 1631–1643, 2002.
[42]  S. M. Uppala, P. W. Kallberg, A. J. Simmons, et al., “The ERA-40 re-analysis,” Quarterly Journal of the Royal Meteorological Society, vol. 131, pp. 2961–3012, 2005.
[43]  D. F. Parrish and J. C. Derber, “The National Meteorological Center's spectral statistical- interpolation analysis system,” Monthly Weather Review, vol. 120, no. 8, pp. 1747–1763, 1992.
[44]  P. Courtier, “The ECMWF implementation of three-dimensional variational assimilation (3D-Var). I: formulation,” Quarterly Journal of the Royal Meteorological Society, vol. 124, no. 550, pp. 1783–1807, 1998.
[45]  M. C. Serreze, “Climatological aspects of cyclone development and decay in the arctic,” Atmosphere, vol. 33, no. 1, pp. 1–23, 1995.
[46]  T. Eichler and W. Higgins, “Climatology and ENSO-related variability of North American extratropical cyclone activity,” Journal of Climate, vol. 19, no. 10, pp. 2076–2093, 2006.
[47]  D. W. J. Thompson and S. Solomon, “Interpretation of recent Southern Hemisphere climate change,” Science, vol. 296, no. 5569, pp. 895–899, 2002.
[48]  V. E. Kousky and R. W. Higgins, “An alert classification system for monitoring and assessing the ENSO cycle,” Weather and Forecasting, vol. 22, no. 2, pp. 353–371, 2007.
[49]  S. Nan and J. Li, “The relationship between summer precipitation in the Yangtze River valley and the previous Southern Hemisphere Annular Mode,” Geophysical Research Letters, vol. 30, no. 24, p. 2266, 2003.
[50]  D. Gong and S. Wang, “Definition of Antarctic oscillation index,” Geophysical Research Letters, vol. 26, no. 4, pp. 459–462, 1999.
[51]  I. Simmonds, K. Keay, and E. Lim, “Synoptic activity in the seas around Antarctica,” Monthly Weather Review, vol. 131, no. 2, pp. 272–288, 2003.
[52]  U. Ulbrich, G. C. Leckebusch, and J. G. Pinto, “Extra-tropical cyclones in the present and future climate: a review,” Theoretical and Applied Climatology, vol. 96, no. 1-2, pp. 117–131, 2009.
[53]  R. J. Murray and I. Simmonds, “A numerical scheme for tracking cyclone centres from digital data. Part II: application to January and July general circulation model simulations,” Australian Meteorological Magazine, vol. 39, no. 3, pp. 167–180, 1991.
[54]  M. G. Akperov and I. I. Mokhov, “A comparative analysis of the method of extratropical cyclone identification,” Izvestiya, vol. 46, no. 5, pp. 574–590, 2010.
[55]  N. Tilinia, S. K. Gulev, I. Rudeva, and P. Koltermann, “Comparing cyclone life cycle characteristics and their interannual variability in different reanalyses,” Journal of Climate, vol. 26, pp. 6419–6438, 2013.
[56]  J. Min, Q. Zhou, N. Liu, Q. Gao, and Z. Guan, “Teleconnection mode between IOD and Northern Hemisphere tropospheric circulation and its mechanism,” Meteorology and Atmospheric Physics, vol. 100, pp. 207–215, 2008.
[57]  I. Simmonds, “Modes of atmospheric variability over the Southern Ocean,” Journal of Geophysical Research, vol. 108, p. 8078, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133