全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Temporal Variations in Concentrations of Ozone, Nitrogen Dioxide, and Carbon Monoxide at Osijek, Croatia

DOI: 10.1155/2013/469786

Full-Text   Cite this paper   Add to My Lib

Abstract:

The purpose of this study was to investigate the ozone, carbon monoxide, and nitrogen dioxide variations and their correlation with meteorological parameters in Osijek (Eastern Croatia) during the summer seasons of 2002, 2007, and 2012. The measured data are discussed in relation to the EU guidelines (Directive 2002/3/EC, Directive 2008/50/EC). In order to characterize ambient air with respect to ozone photochemical pollution we calculated three photochemical pollution indicators. These indicators may also be a valid measure for harmful effects on living organisms. The influence of local meteorological parameters on the measured concentrations of ozone, carbon monoxide, and nitrogen dioxide was also investigated. We have attempted to establish correlations between measured pollutant concentrations and meteorological parameters using the technique of multivariate principal component analysis (PCA). 1. Introduction Air pollution is a common theme for the past decades because of it is growing source of general pollution and the most common source in urban areas being vehicle exhaust. The main pollutants from diesel fuel vehicles include carbon monoxide (CO) and nitrogen dioxide (NO2) from which secondary pollutant ozone (O3) is formed [1]. For a long time, ozone was fairly constant trace constituent of the air, but, in recent years, its concentration in the surface layer of the atmosphere shows a steady increase and at the present time it is greater than ever. Its volume fraction during the preindustrial period increased 2 to 4.5 times and it is still rising [2]. In urban areas or polluted atmosphere various reactions are carried out in which the formation of O3 depends on the ratio of nitrogen oxides ( ), while the effect of CO cycles is such that it slowly oxidizes nitrogen monoxide (NO) to nitrogen dioxide (NO2) and thus indirectly affects the concentration of ozone. Carbon monoxide molecules are entering the cycle of oxidation, and nitrogen monoxide (NO) is oxidized to nitrogen dioxide (NO2). Nitrogen oxides originate mainly from anthropogenic sources, and increased production of ozone in the lower layer is associated with the cycles of photochemical reactions involving volatile organic compounds (VOCs) [3]. Anthropogenic emissions of VOCs and induce changes in the natural sources of tropospheric ozone. If the mixture of and VOCs is irradiated with the visible light, ozone will be generated in the reaction vessel until all the VOCs are spent. The same process is taking place in the air to form large amounts of ozone by solar radiation in the presence

References

[1]  A. Charron and R. M. Harrison, “Primary particle formation from vehicle emissions during exhaust dilution in the roadside atmosphere,” Atmospheric Environment, vol. 37, no. 29, pp. 4109–4119, 2003.
[2]  R. Vingarzan, “A review of surface ozone background levels and trends,” Atmospheric Environment, vol. 38, no. 21, pp. 3431–3442, 2004.
[3]  S. E. Bauer and B. Langmann, “Analysis of a summer smog episode in the Berlin-Brandenburg region with a nested atmosphere—chemistry model,” Atmospheric Chemistry and Physics, vol. 2, no. 4, pp. 259–270, 2002.
[4]  P. O. Wennberg, T. F. Hanisco, L. Jaeglé et al., “Hydrogen radicals, nitrogen radicals, and the production of O3 in the upper troposphere,” Science, vol. 279, no. 5347, pp. 49–53, 1998.
[5]  J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution To Climate Change, John Wiley & Sons, New York, NY, USA, 2nd edition, 2006.
[6]  J. T. Houghton, Y. Ding, D. J. Griggs et al., “Climate change 2001: the scientific basic,” IPPC, Cambridge University Press, Cambridge, UK, 2001.
[7]  M. V. Toro, L. V. Cremades, and J. Calbó, “Relationship between VOC and NOx emissions and chemical production of tropospheric ozone in the Aburrá Valley (Colombia),” Chemosphere, vol. 65, no. 5, pp. 881–888, 2006.
[8]  M. R. Ashmore, “Assessing the future global impacts of ozone on vegetation,” Plant, Cell and Environment, vol. 28, no. 8, pp. 949–964, 2005.
[9]  A. N. Mikerov, X. Gan, T. M. Umstead et al., “Sex differences in the impact of ozone on survival and alveolar macrophage function of mice after Klebsiella pneumoniae infection,” Respiratory Research, vol. 9, article 24, 2008.
[10]  J. A. Patz, D. Campbell-Lendrum, T. Holloway, and J. A. Foley, “Impact of regional climate change on human health,” Nature, vol. 438, no. 7066, pp. 310–317, 2005.
[11]  M. Kampa and E. Castanas, “Human health effects of air pollution,” Environmental Pollution, vol. 151, no. 2, pp. 362–367, 2008.
[12]  E. Kova? and T. Cvita?, “Boundary layer ozone in Osijek, Eastern Croatia,” Geofizika, vol. 24, no. 2, pp. 117–122, 2007.
[13]  E. Kova?-Andri?, G. ?orgo, N. Kezele, T. Cvita?, and L. Klasinc, “Photochemical pollution indicators-an analysis of 12 European monitoring stations,” Environmental Monitoring and Assessment, vol. 165, no. 1–4, pp. 577–583, 2010.
[14]  L. Klasinc, T. Cvita?, S. P. McGlynn, M. Hu, X. Tang, and Y. Zhangd, “Photochemical pollution indicators in the subtropics,” Croatica Chemica Acta, vol. 84, no. 1, pp. 11–16, 2011.
[15]  A. D. McNaught and A. Wilkinson, Compendium of Chemical Terminology: Iupac Recommendations, Blackwell Science, Oxford, UK, 2nd edition, 1997.
[16]  X.-K. Wang and W.-Z. Lu, “Seasonal variation of air pollution index: Hong Kong case study,” Chemosphere, vol. 63, no. 8, pp. 1261–1272, 2006.
[17]  “Directive 2002/3/EC of the European Parliament and of the Council relating to ozone in ambient air,” Official Journal of the European Communities L 67 LEX-FAOC039805, 2002.
[18]  “Directive 2008/50/EC of the European Parliament and of the Council on ambient air quality and cleaner air for Europe,” Official Journal of the European Union L 152 LEX-FAOC080016, 2008.
[19]  “Directives 2000/69/EC of the European Parliament and of the Council of 18 November 2000 relating to limit values for benzene and carbon monoxide in ambient air,” Official Journal of the European Union L 313 LEX-FAOC038310, 2000.
[20]  S. J. Oltmans, A. S. Lefohn, J. M. Harris et al., “Long-term changes in tropospheric ozone,” Atmospheric Environment, vol. 40, no. 17, pp. 3156–3173, 2006.
[21]  R. H. Vlada, “Directive on ozone in air,” 130/11, Narodne Novine, Zagreb, Croatia, 2011 (Croatian).
[22]  R. G. Derwent, P. G. Simmonds, S. Seuring, and C. Dimmer, “Observation and interpretation of the seasonal cycles in the surface concentrations of ozone and carbon monoxide at Mace Head, Ireland from 1990 to 1994,” Atmospheric Environment, vol. 32, no. 2, pp. 145–157, 1998.
[23]  V. Gvozdi?, E. Kova?-Andri?, and J. Brana, “Influence of meteorological factors NO2, SO2, CO and PM10 on the concentration of O3 in the urban atmosphere of Eastern Croatia,” Environmental Modeling and Assessment, vol. 16, no. 5, pp. 491–501, 2011.
[24]  T. Yorifuji, I. Kawachi, M. Kaneda, S. Takao, S. Kashima, and H. Doi, “Diesel vehicle emission and death rates in Tokyo, Japan: a natural experiment,” Science of the Total Environment, vol. 409, no. 19, pp. 3620–3627, 2011.
[25]  K. S. Bradley, D. H. Stedman, and G. A. Bishop, “A global inventory of carbon monoxide emissions from motor vehicles,” Chemosphere, vol. 1, no. 1–3, pp. 65–72, 1999.
[26]  E. Kova?-Andri?, J. Brana, and V. Gvozdi?, “Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods,” Ecological Informatics, vol. 4, no. 2, pp. 117–122, 2009.
[27]  M. Statheropoulos, N. Vassiliadis, and A. Pappa, “Principal component and canonical correlation analysis for examining air pollution and meteorological data,” Atmospheric Environment, vol. 32, no. 6, pp. 1087–1095, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133