全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Beating the Uncertainties: Ensemble Forecasting and Ensemble-Based Data Assimilation in Modern Numerical Weather Prediction

DOI: 10.1155/2010/432160

Full-Text   Cite this paper   Add to My Lib

Abstract:

Accurate numerical weather forecasting is of great importance. Due to inadequate observations, our limited understanding of the physical processes of the atmosphere, and the chaotic nature of atmospheric flow, uncertainties always exist in modern numerical weather prediction (NWP). Recent developments in ensemble forecasting and ensemble-based data assimilation have proved that there are promising ways to beat the forecast uncertainties in NWP. This paper gives a brief overview of fundamental problems and recent progress associated with ensemble forecasting and ensemble-based data assimilation. The usefulness of these methods in improving high-impact weather forecasting is also discussed. 1. Introduction Numerical weather prediction (NWP) is an initial value problem: it forecasts the atmospheric state by integrating a numerical model with given initial conditions. Commonly, two fundamental factors account for an accurate numerical weather forecast: 1) the present state of the atmosphere must be characterized as accurately as possible; 2) the intrinsic laws, according to which the subsequent states develop out of the preceding ones, must be known [1]. These so-called laws are composed of a set of partial differential equations, including the laws of momentum, mass, and energy conservations. Since the first successful NWP in early 1950s by Charney et al. [2], much progress has been made in enhancing the skill of NWP. These include efforts in improving initial conditions through advances in observing systems and the development of atmospheric data assimilation techniques. Many studies also devoted to improve numerical modeling with advanced numerical methods, better representation of dynamics processes of the atmosphere, and improved physical parameterization schemes [3–5]. Today, NWP has become a major forecasting tool in many operational centers around the world. However, due to inadequate observations, our limited understanding of the physical processes of the atmosphere, and the chaotic nature of the atmospheric flow, uncertainties always exist in both initial conditions and numerical models. Thus, reducing forecast errors caused by theses uncertainties remains a large area of research and operational implementation. Recent developments have proved that ensemble forecasting and ensemble-based data assimilation are promising ways to beat the forecast uncertainties in NWP. The objective of this paper is to give a brief overview of the fundamental problems and recent progress associated with ensemble forecasting and ensemble-based data assimilation. The

References

[1]  V. Bjerknes, Dynamic Meteorology and Hydrography. Part II. Kinematics, Carnegie Institute, Gibson Bros, New York, USA, 1911.
[2]  J. G. Charney, R. Fj?rtoft, and J. V. Neumann, “Numerical integration of the barotropic vorticity equation,” Tellus, vol. 2, pp. 237–254, 1950.
[3]  P. Thompson, Numerical Weather Analysis and Prediction, The Macmillan Company, New York, NY, USA, 1961.
[4]  G. J. Haltine, Numerical Weather Prediction, John Wiley & Sons, New York, NY, USA, 1971.
[5]  E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press, Cambridge, UK, 2003.
[6]  E. N. Lorenz, “The predictability of hydrodynamics flow,” Transactions of the New York Academy of Sciences Series II, vol. 25, no. 4, pp. 409–432, 1963.
[7]  E. N. Lorenz, “A study of the predictability of a 28-variable atmospheric model,” Tellus, vol. 12, pp. 321–333, 1965.
[8]  T. N. Palmer, “Predictability of weather and climate: from theory to practice,” in Predictability of Weather and Climate, chapter 1, pp. 1–29, Cambridge University Press, Cambridge, UK, 2006.
[9]  E. S. Epstein, “Stochastic dynamic prediction,” Tellus, vol. 6, pp. 739–759, 1969.
[10]  Z. Toth and E. Kalnay, “Ensemble forecasting at NCEP: the generation of perturbations,” Bulletin of the American Meteorological Society, vol. 74, pp. 2371–2330, 1993.
[11]  Z. Toth and E. Kalnay, “Ensemble forecasting at NCEP and the breeding method,” Monthly Weather Review, vol. 125, no. 12, pp. 3297–3319, 1997.
[12]  R. Buizza and T. N. Palmer, “The singular-vector structure of the atmospheric global circulation,” Journal of the Atmospheric Sciences, vol. 52, no. 9, pp. 1434–1456, 1995.
[13]  F. Molteni, R. Buizza, T. N. Palmer, and T. Petroliagis, “The ECMWF Ensemble prediction system: methodology and validation,” Quarterly Journal of the Royal Meteorological Society, vol. 122, no. 529, pp. 73–119, 1996.
[14]  M. Ehrendorfer and J. J. Tribbia, “Optimal prediction of forecast error covariances through singular vectors,” Journal of the Atmospheric Sciences, vol. 54, no. 2, pp. 286–313, 1997.
[15]  P. L. Houtekamer, L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, “A system simulation approach to Ensemble prediction,” Monthly Weather Review, vol. 124, no. 6, pp. 1225–1242, 1996.
[16]  J. L. Anderson, “The impact of dynamical constraints on the selection of initial conditions for Ensemble predictions: low-order perfect model results,” Monthly Weather Review, vol. 125, no. 11, pp. 2969–2983, 1997.
[17]  C. H. Bishop, B. J. Etherton, and S. J. Majumdar, “Adaptive sampling with the Ensemble transform Kalman filter. Part I: theoretical aspects,” Monthly Weather Review, vol. 129, no. 3, pp. 420–436, 2001.
[18]  M. Wei, Z. Toth, R. Wobus, and Y. Zhu, “Initial perturbations based on the Ensemble transform (ET) technique in the NCEP global operational forecast system,” Tellus, vol. 60, no. 1, pp. 62–79, 2008.
[19]  T. N. Krishnamurti, C. M. Kishtawal, and C. M. Kishtawal, “Multimodel Ensemble forecasts for weather and seasonal climate,” Journal of Climate, vol. 13, no. 23, pp. 4196–4216, 2000.
[20]  V. V. Kharin and F. W. Zwiers, “Climate predictions with multimodel Ensembles,” Journal of Climate, vol. 15, no. 7, pp. 793–799, 2002.
[21]  R. Buizza, M. Miller, and T. N. Palmer, “Stochastic representation of model uncertainties in the ECMWF Ensemble prediction system,” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 560, pp. 2887–2908, 1999.
[22]  G. Shutts and T. N. Palmer, “The use of high-resolution numerical simulations of tropical circulation to calibrate stochastic physics schemes,” in Proceedings of the Simulation and Prediction of Intra-seasonal Variability with Emphasis on the MJO (ECMWF/CLIVAR '04), pp. 83–102, European Centre for Medium-Range Weather Forecasts, Reading, UK, 2004.
[23]  C. A. Reynolds, J. Teixeira, and J. G. McLay, “Impact of stochastic convection on the Ensemble transform,” Monthly Weather Review, vol. 136, no. 11, pp. 4517–4526, 2008.
[24]  T. N. Palmer, “A nonlinear dynamical perspective model error: a proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models,” Quarterly Journal of the Royal Meteorological Society, vol. 127, no. 572, pp. 279–304, 2001.
[25]  G. Shutts, “A kinetic energy backscatter algorithm for use in Ensemble prediction systems,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 612, pp. 3079–3102, 2005.
[26]  J. Teixeira, C. A. Reynolds, and K. Judd, “Time step sensitivity of nonlinear atmospheric models: numerical convergence, truncation error growth, and Ensemble design,” Journal of the Atmospheric Sciences, vol. 64, no. 1, pp. 175–189, 2007.
[27]  P. L. Houtekamer, L. Lefaivre, J. Derome, H. Ritchie, and H. L. Mitchell, “A system simulation approach to Ensemble prediction,” Monthly Weather Review, vol. 124, no. 6, pp. 1225–1242, 1996.
[28]  M. S. Tracton and E. Kalnay, “Operational Ensemble prediction at the National Meteorological Center: practical aspects,” Weather & Forecasting, vol. 8, no. 3, pp. 379–398, 1993.
[29]  Z.-X. Pu and E. Kalnay, “Targeting observations with the quasi-inverse linear and adjoint NCEP global models: performance during FASTEX,” Quarterly Journal of the Royal Meteorological Society, vol. 125, no. 561, pp. 3329–3337, 1999.
[30]  A. C. Lorenc, “Analysis methods for numerical weather prediction,” Quarterly Journal of the Royal Meteorological Society, vol. 112, pp. 1177–1194, 1986.
[31]  T. M. Hamill, “Ensemble-based atmospheric data assimilation,” in Predictability of Weather and Climate, pp. 124–156, Cambridge University Press, Cambridge, UK, 2006.
[32]  J. L. Anderson, “Data assimilation research testbed tutorial note,” 2006, http://www.image.ucar.edu/DAReS/DART/DART_Documentation.php#tutorial_simple.
[33]  R. E. Kalman, “A new approach to linear filtering and prediction problems,” Transactions of the ASME: Journal of Basic Engineering, Series D, vol. 82, pp. 35–45, 1960.
[34]  R. E. Kalman and R. Bucy, “New results in linear filtering and prediction theory,” Transactions of the ASME: Journal of Basic Engineering, Series D, vol. 83, pp. 95–108, 1961.
[35]  G. Evensen, “The Ensemble Kalman filter: theoretical formulation and practical implementation,” Ocean Dynamics, vol. 53, pp. 343–367, 2003.
[36]  G. Evensen, “Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model,” Journal of Geophysical Research, vol. 97, no. 11, pp. 17905–17924, 1992.
[37]  G. Evensen, “Sequential data assimilation with a non-linear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,” Journal of Geophysical Research, vol. 99, no. 5, pp. 143–162, 1994.
[38]  G. Evensen and P. J. van Leeuwen, “Assimilation of geosat altimeter data for the agulhas current using the Ensemble kalman filter with a quasigeostrophic model,” Monthly Weather Review, vol. 124, no. 1, pp. 85–96, 1996.
[39]  P. L. Houtekamer and H. L. Mitchell, “Data assimilation using an Ensemble Kalman filter technique,” Monthly Weather Review, vol. 126, no. 3, pp. 796–811, 1998.
[40]  J. L. Anderson, “An Ensemble adjustment Kalman filter for data assimilation,” Monthly Weather Review, vol. 129, no. 12, pp. 2884–2903, 2001.
[41]  S.-J. Baek, B. R. Hunt, E. Kalnay, E. Oott, and I. Szunyogh, “Local Ensemble Kalman filtering in the presence of model bias,” Tellus, vol. 58, no. 3, pp. 293–306, 2006.
[42]  M. Corazza, E. Kalnay, and S. C. Yang, “An implementation of the Local Ensemble Kalman Filter in a quasigeostrophic model and comparison with 3D-Var,” Nonlinear Processes in Geophysics, vol. 14, no. 1, pp. 89–101, 2007.
[43]  B. R. Hunt, E. J. Kostelich, and I. Szunyogh, “Efficient data assimilation for spatiotemporal chaos: a Local Ensemble transform Kalman filter,” Physica D, vol. 230, no. 1-2, pp. 112–126, 2007.
[44]  T. Miyoshi and S. Yamane, “Local Ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution,” Monthly Weather Review, vol. 135, no. 11, pp. 3841–3861, 2007.
[45]  J. Harlim and B. R. Hunt, “Four-dimensional local Ensemble transform Kalman filter: numerical experiments with a global circulation model,” Tellus, vol. 59, no. 5, pp. 731–748, 2007.
[46]  S.-C. Yang, E. Kalnay, B. Hunt, and N. E. Bowler, “Weight interpolation for efficient data assimilation with the Local Ensemble Transfom Kalman filter,” Quarterly Journal of the Royal Meteorological Society, vol. 135, no. 638, pp. 251–262, 2009.
[47]  J. S. Whitaker and T. M. Hamill, “Ensemble data assimilation without perturbed observations,” Monthly Weather Review, vol. 130, no. 7, pp. 1913–1924, 2002.
[48]  C. K?pken, G. Kelly, and J.-N. Thépaut, “Assimilation of Meteosat radiance data within the 4D-Var system at ECMWF: assimilation experiments and forecasts impact,” Quarterly Journal of the Royal Meteorological Society, vol. 130, no. 601, pp. 2277–2292, 2004.
[49]  J.-F. Mahfouf, P. Bauer, and V. Marécal, “The assimilation of SSM/I and TMI rainfall rates in the ECMWF 4D-Var system,” Quarterly Journal of the Royal Meteorological Society, vol. 131, no. 606, pp. 437–458, 2005.
[50]  P. Bauer, P. Lopez, A. Benedetti, D. Salmond, and E. Moreau, “Implementation of 1D+4D-Var assimilation of precipitation-affected microwave radiances at ECMWF. I: 1D-Var,” Quarterly Journal of the Royal Meteorological Society, vol. 132, no. 620, pp. 2277–2306, 2006.
[51]  E. Kalnay, H. Li, T. Miyoshi, S.-C. Yang, and J. Ballabrera-Poy, “4-D-Var or Ensemble Kalman filter?” Tellus, vol. 59, no. 5, pp. 758–773, 2007.
[52]  A. C. Lorenc, “The potential of the Ensemble Kalman filter for NWP—a comparison with 4D-Var,” Quarterly Journal of the Royal Meteorological Society, vol. 129, no. 595, pp. 3183–3203, 2003.
[53]  E. J. Fertig, J. Harlim, and B. R. Hunt, “A comparative study of 4D-VAR and a 4D Ensemble Kalman filter: perfect model simulations with Lorenz-96,” Tellus, vol. 59, no. 1, pp. 96–100, 2007.
[54]  E. N. Lorenz, “Predictability—a problem partly solved,” in Proceedings of the Seminar on Predictability, ECMWF, September 1996.
[55]  S.-C. Yang, M. Corazza, A. Carrassi, E. Kalnay, and T. Miyoshi, “Comparison of Ensemble-based and variational-based data assimilation schemes in a quasi-geostrophic model,” in Proceedings of the 10th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface, 2007, http://ams.confex.com/ams/pdfpapers/101581.pdf.
[56]  M. Buehner, C. Charente, B. He, et al., “Intercomparison of 4-DVar and EnKF systems for operational deterministic NWP,” 2008, http://4dvarenkf.cima.fcen.uba.ar/Download/Session_7/Intercomparison_4D-Var_EnKF_Buehner.pdf.
[57]  T. M. Hamill and C. Snyder, “A hybrid Ensemble Kalman filter-3D variational analysis scheme,” Monthly Weather Review, vol. 128, no. 8, pp. 2905–2919, 2000.
[58]  Z. Pu and J. Hacker, “Ensemble-based Kalman filters in strongly nonlinear dynamics,” Advances in Atmospheric Sciences, vol. 26, pp. 373–380, 2009.
[59]  P. J. Van Leeuwen, “A variance-minimizing filter for large-scale applications,” Monthly Weather Review, vol. 131, no. 9, pp. 2071–2084, 2003.
[60]  I. Hoteit, D.-T. Pham, G. Korres, and G. Triantafyllou, “Particle Kalman filtering for data assimilation in meteorology and oceanography,” in Proceedings of the 3rd International Conference on Reanalysis (WCRP '08), p. 6, Tokyo, Japan, 2008.
[61]  S.-C. Yang and E. Kalnay, “Handling nonlinearity and non-Gaussianity in Ensemble Kalman filter: Experiments with the three-variable Lorenz model,” 2010, http://www.atmos.umd.edu/~ekalnay/YangKalnay2010Rev.pdf.
[62]  J. Du, S. L. Mullen, and F. Sanders, “Short-range Ensemble forecasting of quantitative precipitation,” Monthly Weather Review, vol. 125, no. 10, pp. 2427–2459, 1997.
[63]  S. L. Mullen, J. Du, and F. Sanders, “The dependence of Ensemble dispersion on analysis-forecast systems: implications to short-range Ensemble forecasting of precipitation,” Monthly Weather Review, vol. 127, no. 7, pp. 1674–1686, 1999.
[64]  H. Yuan, S. L. Mullen, X. Gao, S. Sorooshian, J. Du, and H.-M. H. Juang, “Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/03 by the RSM Ensemble system,” Monthly Weather Review, vol. 133, no. 1, pp. 279–294, 2005.
[65]  J. Du and M.S. Tracton, “Implementation of a real time short-range Ensemble forecasting system at NCEP: an update,” in Proceedings of the 9th conference on Mesoscale processed, pp. 355–356, American Meteorological Society, Fort Lauderdale, Fla, USA, 2001.
[66]  J. Du, J. McQueen, G. DiMego, et al., “New dimension of NCEP short-range Ensemble forecasting (SREF) system: inclusion of WRF members,” WMO Expert Team Meeting on Ensemble Prediction System, Exeter, UK, February 2006, 5 pages, http://www.emc.ncep.noaa.gov/mmb/SREF/reference.html, Preprint.
[67]  H. Yuan, S. L. Mullen, X. Gao, S. Sorooshian, J. Du, and H.-M. H. Juang, “Verification of probabilistic quantitative precipitation forecasts over the southwest United States during winter 2002/03 by the RSM Ensemble system,” Monthly Weather Review, vol. 133, no. 1, pp. 279–294, 2005.
[68]  Z. Zhang and T. N. Krishnamurti, “Ensemble forecasting of hurricane tracks,” Bulletin of the American Meteorological Society, vol. 78, no. 12, pp. 2785–2795, 1997.
[69]  S. D. Aberson, M. A. Bender, and R. E. Tuleya, “Ensemble forecasting of tropical cyclone tracks,” in Proceedings of the 12th Conference on Numerical Weather Prediction, pp. 290–292, American Meteorological Society, Phoenix, Ariz, USA, 1998.
[70]  B. P. Mackey and T. N. Krishnamurti, “Ensemble forecast of a typhoon flood event,” Weather & Forecasting, vol. 16, no. 4, pp. 399–415, 2001.
[71]  F. Zhang, Y. Weng, J. A. Sippel, Z. Meng, and C. H. Bishop, “Cloud-resolving hurricane initialization and prediction through assimilation of doppler radar observations with an Ensemble Kalman filter,” Monthly Weather Review, vol. 137, no. 7, pp. 2105–2125, 2009.
[72]  M. Tong and M. Xue, “Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and Ensemble square root Kalman filter. Part II: parameter estimation experiments,” Monthly Weather Review, vol. 136, no. 5, pp. 1649–1668, 2008.
[73]  M. Xue, M. Tong, and G. Zhang, “Simultaneous state estimation and attenuation correction for thunderstorms with radar data using an Ensemble Kalman filter: tests with simulated data,” Quarterly Journal of the Royal Meteorological Society, vol. 135, no. 643, pp. 1409–1423, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133