This paper presents the vegetation change trends and their causes in the Inner Mongolian Autonomous Region, China from 1982 to 2006. We used National Oceanic and Atmospheric Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR) data to determine the vegetation change trends based on regression model by fitting simple linear regression through the time series of the integrated Normalized Difference Vegetation Index (NDVI) in the growing season for each pixel and calculating the slopes. We also explored the relationship between vegetation change trends and climatic and anthropogenic factors. This paper indicated that a large portion of the study area (17%) had experienced a significant vegetation increase at the 0.05 level from 1982 to 2006. The significant vegetation increase showed no positive link with precipitation and was mainly caused by human activities. In or to the south of Horqin Sandy Land, in the Hetao Plain, and at the northern foothills of the YinshanMountain, the significant NDVI increase trends were mainly caused by the increase of the millet yield per unit of cropland. In the east of Ordos Plateau, the significant NDVI increase trends were mainly determined by the fencing and planting of grasses and trees on grassland. 1. Introduction Desertification is one of the most serious regional environmental issues [1]. China is one of the major countries facing this problem in the world. The total area of desertification-prone land was approximately 2.62 million km2, occupying 27.3% of the total area of China [2]. The Inner Mongolian Autonomous Region, located in the north of China, is a typical agriculture-grazing transitional zone that has been seriously affected by desertification and has suffered from severe wind erosion and a high frequency of dust storms [3]. Thus, it is very important to determine the vegetation change trends for combating the desertification in this area. With the accumulation of remotely sensed images over the past three decades, research on desertification based on monitoring vegetation change has been conducted from national to regional scales [4–9]. Fang et al. [4] and Piao et al. [5] reported that the vegetation in arid and semiarid areas of China increased significantly according to the analyses of NOAA/AVHRR data from 1982 to 1999. These results suggested a reversal of the desertification processes in these regions. This research attributed the major cause of the vegetation increase to precipitation change. According to the research above, human activity was only responsible for a minor part of the
References
[1]
D. S. G. Thomas, “Science and the desertification debate,” Journal of Arid Environments, vol. 37, no. 4, pp. 599–608, 1997.
[2]
Chinese Committee for Implementing UN Convention to Combat Desertification (CCICCD), China Country Paper to Combat Desertification, China Forestry Publishing House, Beijing, China, 1997.
[3]
X. M. Wang, F. H. Chen, and Z. B. Dong, “The relative role of climatic and human factors in desertification in semiarid China,” Global Environmental Change, vol. 16, no. 1, pp. 48–57, 2006.
[4]
J. Y. Fang, S. L. Piao, J. S. He, and W. H. Ma, “Increasing terrestrial vegetation activity in China, 1982-1999,” Science in China C, vol. 47, no. 3, pp. 229–240, 2004.
[5]
S. Piao, J. Fang, H. Liu, and B. Zhu, “NDVI-indicated decline in desertification in China in the past two decades,” Geophysical Research Letters, vol. 32, no. 6, pp. 1–4, 2005.
[6]
M. C. Runnstr?m, “Is northern China winning the battle against desertification? Satellite remote sensing as a tool to study biomass trends on the ordos plateau in semiarid China,” AMBIO, vol. 29, no. 8, pp. 468–476, 2000.
[7]
M. C. Runnstr?m, “Rangeland development of the Mu Us Sandy Land in semiarid China: an analysis using landsat and NOAA remote sensing data,” Land Degradation and Development, vol. 14, no. 2, pp. 189–202, 2003.
[8]
H. J. Liu, C. H. Zhou, W. M. Cheng, E. Long, and R. Li, “Monitoring sandy desertification of Otindag Sandy Land based on multi-date remote sensing images,” Acta Ecologica Sinica, vol. 28, no. 2, pp. 627–635, 2008.
[9]
S. Liu and T. Wang, “Aeolian desertification from the mid-1970s to 2005 in Otindag Sandy Land, Northern China,” Environmental Geology, vol. 51, no. 6, pp. 1057–1064, 2007.
[10]
M. Kassas, “Desertification: a general review,” Journal of Arid Environments, vol. 30, no. 2, pp. 115–128, 1995.
[11]
S. M. Herrmann, A. Anyamba, and C. J. Tucker, “Recent trends in vegetation dynamics in the African Sahel and their relationship to climate,” Global Environmental Change, vol. 15, no. 4, pp. 394–404, 2005.
[12]
L. Jarlan, S. Mangiarotti, E. Mougin, P. Mazzega, P. Hiernaux, and V. Le Dantec, “Assimilation of SPOT/VEGETATION NDVI data into a sahelian vegetation dynamics model,” Remote Sensing of Environment, vol. 112, no. 4, pp. 1381–1394, 2008.
[13]
L. Olsson, L. Eklundh, and J. Ard?, “A recent greening of the Sahel—Trends, patterns and potential causes,” Journal of Arid Environments, vol. 63, no. 3, pp. 556–566, 2005.
[14]
A. Anyamba and C. J. Tucker, “Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981-2003,” Journal of Arid Environments, vol. 63, no. 3, pp. 596–614, 2005.
[15]
S. M. Herrmann, A. Anyamba, and C. J. Tucker, “Recent trends in vegetation dynamics in the African Sahel and their relationship to climate,” Global Environmental Change, vol. 15, no. 4, pp. 394–404, 2005.
[16]
C. O. Justice, B. N. Holben, and M. D. Gwynne, “Monitoring East African vegetation using AVHRR data,” International Journal of Remote Sensing, vol. 7, no. 11, pp. 1453–1474, 1986.
[17]
S. E. Nicholson, M. L. Davenport, and A. R. Malo, “A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR,” Climatic Change, vol. 17, no. 2-3, pp. 209–241, 1990.
[18]
N. Martiny, P. Camberlin, Y. Richard, and N. Philippon, “Compared regimes of NDVI and rainfall in semi-arid regions of Africa,” International Journal of Remote Sensing, vol. 27, no. 23, pp. 5201–5223, 2006.
[19]
S. Chamaille-Jammes, H. Fritz, and F. Murindagomo, “Spatial patterns of the NDVI-rainfall relationship at the seasonal and interannual time scales in an African savanna,” International Journal of Remote Sensing, vol. 27, no. 23, pp. 5185–5200, 2006.
[20]
J. Pinzon, M. E. Brown, and C. J. Tucker, “Satellite time series correction of orbital drift artifacts using empirical mode decomposition,” in Hilbert-Huang Transform: Introduction and Applications, N. Huang, Ed., pp. 167–186, 2005.
[21]
J. Liu, M. Liu, H. Tian et al., “Spatial and temporal patterns of China's cropland during 1990-2000: an analysis based on Landsat TM data,” Remote Sensing of Environment, vol. 98, no. 4, pp. 442–456, 2005.
[22]
R. G. Congalton and K. Green, In Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Boca Raton, Fla, USA, 1999.
[23]
G. Shaw and D. Wheeler, Statistical Techniques in Geographical Analysis, John Wiley & Sons, Chichester, UK, 1985.