全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Diurnal and Seasonal Patterns of Methane Emissions from a Dairy Operation in North China Plain

DOI: 10.1155/2011/190234

Full-Text   Cite this paper   Add to My Lib

Abstract:

In China, dairy cattle managed in collective feedlots contribute about 30% of the milk production and are believed to be an important contributor to national methane emissions. Methane emissions from a collective dairy feedlot in North China Plain (NCP) were measured during the winter, spring, summer, and fall seasons with open-path lasers in combination with an inverse dispersion technique. Methane emissions from the selected dairy feedlot were characterized by an apparent diurnal pattern with three peaks corresponding to the schedule of feeding activities. On a per capita basis, daily methane emission rates of these four seasons were 0.28, 0.32, 0.33, and 0.30?kg?head?1?d?1, respectively. In summary, annual methane emission rate was 112.4?kg?head?1?yr?1 associated with methane emission intensity of 32.65?L CH4 L?1 of milk and potential methane conversion factor Ym of 6.66% of gross energy intake for mature dairy cows in North China Plain. 1. Introduction The dairy cow population in China has increased from 40,000 animals to 13.25 million animals during the period of 1949–2006. Dairy production has become one of the most profitable and increasing industries in the agriculture sector in China. For example, in 2008, the GDP originated from Chinese dairy industry was ¥101.5 billion, which accounted for about 10% of the total animal production and about 3.0% of total agricultural production [1]. Considerable efforts have been made to estimate enteric methane emissions from dairy cows in China in order to improve the accuracy of national methane inventory [2–4]. These inventories are mainly based on the Intergovernmental Panel on Climate Change (IPCC) methodology. However, many studies have demonstrated that methane emissions from ruminants are strongly influenced by factors such as feeding activity, composition of feedstuffs, and use of additives, which are not included in the IPCC methodology. In China, management practices are frequently different from one dairy facility to another; hence, large uncertainties in the inventory estimates are anticipated. Dairy cattle in China are being managed in different types of dairy facilities. Based on the number of animals, these facilities are either classified as intensive, collective, or household level operations [5]. As reported by Ma et al. [6], about 45%, 29.3%, and 25.9% of the Chinese dairy cow population is held in household, collective, and intensive dairy facilities, respectively, and the collective dairy feedlot has been considered a transition phase that links the transformation from household to

References

[1]  L. Zan, X. Fu, and S. Li, “Countermeasures, present conditions, problems and development trends of the Chinese milk industry,” Chinese Agricultural Science Bulletin, vol. 21, no. 8, pp. 19–22, 2005.
[2]  ADB, “Asian Least-Cost greenhouse gas abatement strategies-People’s Republic of China, 115–119,” Manila, Philippines: Asian Development Bank, 1999.
[3]  D. Hongmin, L. Erda, L. Yue, R. Minjie, and Y. Qichang, “An estimation of methane emissions from agricultural activities in China,” Ambio, vol. 25, no. 4, pp. 292–296, 1996.
[4]  H. Dong, X. Tao, H. Xin, and Q. He, “Comparison of enteric methane emissions in China for different IPCC estimation methods and production schemes,” Transactions of the American Society of Agricultural Engineers, vol. 47, no. 6, pp. 2051–2057, 2004.
[5]  C. Liu, China Dairy Year Book 2008, China Agricultural Press, Beijing, China, 2008.
[6]  J. Ma, L. Gan, X. Qian, H. Tan, and D. Xu, “The present status of milk industry in our country and the countermeasure of sustained growth,” Journal of Agricultural Mechanization Research, vol. 1, pp. 50–52, 2006 (Chinese).
[7]  Z. Gao, H. Yuan, W. Ma, X. Liu, and R. L. Desjardins, “Methane emissions from a dairy feedlot during the fall and winter seasons in Northern China,” Environmental Pollution, vol. 159, no. 5, pp. 1183–1189, 2011.
[8]  Food and Agriculture Organization of the United Nations, “Greenhouse gas emissions from the dairy sector: A life cycle assessment,” p. 18 and p. 32, 2010.
[9]  T. K. Flesch, J. D. Wilson, and E. Yee, “Backward-time Lagrangian stochastic dispersion models and their application to estimate gaseous emissions,” Journal of Applied Meteorology, vol. 34, no. 6, pp. 1320–1332, 1995.
[10]  T. K. Flesch, J. D. Wilson, L. A. Harper, B. P. Crenna, and R. R. Sharpe, “Deducing ground-to-air emissions from observed trace gas concentrations: a field trial,” Journal of Applied Meteorology, vol. 43, no. 3, pp. 487–502, 2004.
[11]  T. K. Flesch, J. D. Wilson, L. A. Harper, R. W. Todd, and N. A. Cole, “Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique,” Agricultural and Forest Meteorology, vol. 144, no. 1-2, pp. 139–155, 2007.
[12]  L. A. Harper, T. K. Flesch, and J. D. Wilson, “Ammonia emissions from broiler production in the San Joaquin Valley,” Poultry Science, vol. 89, no. 9, pp. 1802–1814, 2010.
[13]  T. K. Flesch, R. L. Desjardins, and D. Worth, “Fugitive methane emissions from an agricultural biodigester,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3927–3935, 2011.
[14]  R. P. Van Haarlem, R. L. Desjardins, Z. Gao, T. K. Flesch, and X. Li, “Methane and ammonia emissions from a beef feedlot in western Canada for a twelve-day period in the fall,” Canadian Journal of Animal Science, vol. 88, no. 4, pp. 641–649, 2008.
[15]  Z. Gao, M. Mauder, R. L. Desjardins, T. K. Flesch, and R. P. van Haarlem, “Assessment of the backward Lagrangian Stochastic dispersion technique for continuous measurements of CH4 emissions,” Agricultural and Forest Meteorology, vol. 149, no. 9, pp. 1516–1523, 2009.
[16]  L. A. Harper, O. T. Denmead, J. R. Freney, and F. M. Byers, “Direct measurements of methane emissions from grazing and feedlot cattle,” Journal of Animal Science, vol. 77, no. 6, pp. 1392–1401, 1999.
[17]  R. Kinsman, F. D. Sauer, H. A. Jackson, and M. S. Wolynetz, “Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six-month period,” Journal of Dairy Science, vol. 78, no. 12, pp. 2760–2766, 1995.
[18]  Y. L. P. Le Du, R. D. Baker, and J. M. Barker, “Milk-fed calves. 2. The effect of length of milk feeding period and milk intake upon herbage intake and performance of grazing calves,” Journal of Agricultural Science, vol. 87, pp. 197–204, 1976.
[19]  K. H. Ominski, D. A. Boadi, K. M. Wittenberg, D. L. Fulawka, and J. A. Basarab, “Estimates of enteric methane emissions from cattle in Canada using the IPCC Tier-2 methodology,” Canadian Journal of Animal Science, vol. 87, no. 3, pp. 459–467, 2007.
[20]  S. Husted, “Seasonal variation in methane emission from stored slurry and solid manures,” Journal of Environmental Quality, vol. 23, no. 3, pp. 585–592, 1994.
[21]  IPCC, “Emissions from livestock and manure management,” in IPCC Guidelines for National Greenhouse Gas Inventories, chapter 10, 2006.
[22]  A. B. Leytem, R. S. Dungan, D. L. Bjorneberg, and A. C. Koehn, “Emissions of ammonia, methane, carbon dioxide, and nitrous oxide from dairy cattle housing and manure management systems,” Journal of Environmental Quality, vol. 40, no. 5, pp. 1383–1394, 2011.
[23]  B. Amon, T. T. Amon, J. Boxberger, and C. Alt, “Emissions of NH3, N2O and CH4 from dairy cows housed in a farmyard manure tying stall (housing, manure storage, manure spreading),” Nutrient Cycling in Agroecosystems, vol. 60, no. 1–3, pp. 103–113, 2001.
[24]  L. A. Harper, T. K. Flesch, J. M. Powell, W. K. Coblentz, W. E. Jokela, and N. P. Martin, “Ammonia emissions from dairy production in Wisconsin,” Journal of Dairy Science, vol. 92, no. 5, pp. 2326–2337, 2009.
[25]  S. M. McGinn, T. K. Flesch, L. A. Harper, and K. A. Beauchemin, “An approach for measuring methane emissions from whole farms,” Journal of Environmental Quality, vol. 35, no. 1, pp. 14–20, 2006.
[26]  J. Laubach and F. M. Kelliher, “Methane emissions from dairy cows: comparing open-path laser measurements to profile-based techniques,” Agricultural and Forest Meteorology, vol. 135, no. 1–4, pp. 340–345, 2005.
[27]  C. Grainger, T. Clarke, S. M. McGinn et al., “Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques,” Journal of Dairy Science, vol. 90, no. 6, pp. 2755–2766, 2007.
[28]  E. Kebreab, K. Clark, C. Wagner-Riddle, and J. France, “Methane and nitrous oxide emissions from Canadian animal agriculture: a review,” Canadian Journal of Animal Science, vol. 86, no. 2, pp. 135–158, 2006.
[29]  K. A. Beauchemin and S. M. McGinn, “Methane emissions from feedlot cattle fed barley or corn diets,” Journal of Animal Science, vol. 83, no. 3, pp. 653–661, 2005.
[30]  X. P. C. Vergé, J. A. Dyer, R. L. Desjardins, and D. Worth, “Greenhouse gas emissions from the Canadian dairy industry in 2001,” Agricultural Systems, vol. 94, no. 3, pp. 683–693, 2007.
[31]  F. D. Sauer, V. Fellner, R. Kinsman et al., “Methane output and lactation response in holstein cattle with monensin or unsaturated fat added to the diet,” Journal of Animal Science, vol. 76, no. 3, pp. 906–914, 1998.
[32]  K. R. Lassey, “Livestock methane emission: from the individual grazing animal through national inventories to the global methane cycle,” Agricultural and Forest Meteorology, vol. 142, no. 2–4, pp. 120–132, 2007.
[33]  J. Li, Modern Dairy Cattle Production, China Agricultural University Press, Beijing, China, 2007.
[34]  J. Wang, Modern Dairy Breeding, China Agriculture Press, Beijing, China, 2006.
[35]  K. Johnson, M. Huyler, H. Westberg, B. Lamb, and P. Zimmerman, “Measurement of methane emissions from ruminant livestock using a SF6 tracer technique,” Environmental Science and Technology, vol. 28, no. 2, pp. 359–362, 1994.
[36]  D. A. Boadi and K. M. Wittenberg, “Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique,” Canadian Journal of Animal Science, vol. 82, no. 2, pp. 201–206, 2002.
[37]  T. A. McAllister, E. K. Okine, G. W. Mathison, and K. J. Cheng, “Dietary, environmental and microbiological aspects of methane production in ruminants,” Canadian Journal of Animal Science, vol. 76, no. 2, pp. 231–243, 1996.
[38]  M. A. Kujawa, Energy partitioning in steers fed cottonseed hulls and beet pulp, Ph.D Dissertation, Colorado State University, Fort Collins, Colo, USA, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133