全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Tracing Atlantic Water Signature in the Arctic Sea Ice Cover East of Svalbard

DOI: 10.1155/2012/201818

Full-Text   Cite this paper   Add to My Lib

Abstract:

We focus on the Arctic Ocean between Svalbard and Franz Joseph Land in order to elucidate the possible role of Atlantic water (AW) inflow in shaping ice conditions. Ice conditions substantially affect the temperature regime of the Spitsbergen archipelago, particularly in winter. We test the hypothesis that intensive vertical mixing at the upper AW boundary releases substantial heat upwards that eventually reaches the under-ice water layer, thinning the ice cover. We examine spatial and temporal variation of ice concentration against time series of wind, air temperature, and AW temperature. Analysis of 1979–2011 ice properties revealed a general tendency of decreasing ice concentration that commenced after the mid-1990s. AW temperature time series in Fram Strait feature a monotonic increase after the mid-1990s, consistent with shrinking ice cover. Ice thins due to increased sensible heat flux from AW; ice erosion from below allows wind and local currents to more effectively break ice. The winter spatial pattern of sea ice concentration is collocated with patterns of surface heat flux anomalies. Winter minimum sea ice thickness occurs in the ice pack interior above the AW path, clearly indicating AW influence on ice thickness. Our study indicates that in the AW inflow region heat flux from the ocean reduces the ice thickness. 1. Introduction Steady reduction of the Arctic sea ice cover throughout 1990s has accelerated in the 2000s [1, 2]. As demonstrated in the recent studies, causative mechanisms for the extreme ice area/volume decay include an anomalous atmospheric circulation which forced ice out of the Canadian Basin towards Fram Strait [3, 4], the influence of warm inflow through Bering/Fram straits [5, 6], and the melting effect of warmed surface water [7]. However, long-term preconditioning occurred during three decades of steady ice thinning [8, 9]. This was largely a result of the fact that the Arctic has warmed up about twice as fast as lower latitudes due to the so-called polar amplification [10–12]. Years of reduced ice growth in winter and enhanced ice melt in summer led to the dominance of first-year ice over multiyear ice after 2004 [13]. Under conditions of enhanced seasonality, the influence of ocean heat on Arctic ice cover is expected to grow. The retreating summer ice edge increases the size of the marginal ice zones (MIZs)—the transient areas between open water and totally ice-covered ocean. For the Spitsbergen region, this process is particularly important due to the existence of an extended open water area (a quasi-steady-state

References

[1]  J. C. Comiso, C. L. Parkinson, R. Gersten, and L. Stock, “Accelerated decline in the Arctic sea ice cover,” Geophysical Research Letters, vol. 35, no. 1, Article ID L01703, 2008.
[2]  M. Wang and J. E. Overland, “A sea ice free summer Arctic within 30 years?” Geophysical Research Letters, vol. 36, no. 7, Article ID L07502, 2009.
[3]  B. Y. Wu, J. Wang, and J. E. Walsh, “Dipole anomaly in the winter Arctic atmosphere and its association with sea ice motion,” Journal of Climate, vol. 19, no. 1, pp. 210–225, 2006.
[4]  V. A. Alexeev, I. N. Esau, I. V. Polyakov, S. J. Byam, and S. Sorokina, “Vertical structure of recent Arctic warming from observed data and reanalysis products,” Climatic Change, vol. 111, no. 2, pp. 215–239, 2011.
[5]  K. Shimada, T. Kamoshida, M. Itoh et al., “Pacific Ocean inflow: influence on catastrophic reduction of sea ice cover in the Arctic Ocean,” Geophysical Research Letters, vol. 33, no. 8, Article ID L08605, 2006.
[6]  I. V. Polyakov, L. A. Timokhov, V. A. Alexeev et al., “Arctic ocean warming contributes to reduced polar ice cap,” Journal of Physical Oceanography, vol. 40, no. 12, pp. 2743–2756, 2010.
[7]  D. K. Perovich, J. A. Richter-Menge, K. F. Jones, and B. Light, “Sunlight, water, and ice: extreme Arctic sea ice melt during the summer of 2007,” Geophysical Research Letters, vol. 35, Article ID L11501, 4 pages, 2008.
[8]  D. A. Rothrock, Y. Yu, and G. A. Maykut, “Thinning of the Arctic Sea-Ice cover,” Geophysical Research Letters, vol. 26, no. 23, pp. 3469–3472, 1999.
[9]  J. Rodrigues, “The rapid decline of the sea ice in the Russian Arctic,” Cold Regions Science and Technology, vol. 54, no. 2, pp. 124–142, 2008.
[10]  V. A. Alexeev, P. L. Langen, and J. R. Bates, “Polar amplification of surface warming on an aquaplanet in "ghost forcing" experiments without sea ice feedbacks,” Climate Dynamics, vol. 24, no. 7-8, pp. 655–666, 2005.
[11]  P. L. Langen and V. A. Alexeev, “Polar amplification as a preferred response in an idealized aquaplanet GCM,” Climate Dynamics, vol. 29, no. 2-3, pp. 305–317, 2007.
[12]  R. V. Bekryaev, I. V. Polyakov, and V. A. Alexeev, “Role of polar amplification in long-term surface air temperature variations and modern arctic warming,” Journal of Climate, vol. 23, no. 14, pp. 3888–3906, 2010.
[13]  R. Kwok, C. F. Cunningham, M. Wesnahan, I. Rigor, H. J. Zwally, and D. Yi, “Thinning and volume loss of the Arctic Ocean ice cover: 2003–2008,” Journal of Geophysical Research, vol. 114, Article ID C07005, 16 pages, 2009.
[14]  S. Lind and R. B. Ingvaldsen, “Variability and impacts of Atlantic water entering the Barents sea from the north,” Deep Sea Research I, vol. 62, pp. 70–88, 2011.
[15]  V. V. Ivanov, I. V. Polyakov, I. A. Dmitrenko et al., “Seasonal variability in Atlantic Water off Spitsbergen,” Deep-Sea Research I, vol. 56, no. 1, pp. 1–14, 2009.
[16]  Environmental Working Group (EWG), 1998, Joint U.S.-Russian Atlas of the Arctic Ocean (CD-ROM), National Snow and Ice Data Center, Boulder, Colo, USA, 1997.
[17]  Y. G. Nikiforov and A. O. Shpaikher, Features of the Formation of Hydrological Regime Large-Scale Variations in the Arctic Ocean, Gydrometeoizdat, Leningrad, Russia, 1980.
[18]  R. Kwok and J. Morrison, “Dynamic topography of the ice-covered Arctic ocean from ICESat,” Geophysical Research Letters, vol. 38, Article ID L02501, 6 pages, 2011.
[19]  B. Rudels, E. P. Jones, L. G. Anderson, and G. Kattner, “On the intermediate depth waters in the Arctic ocean,” in The Polar Oceans and Their Role in Shaping the Global Environment, O. M. Johannessen, R. D. Muench, and J. E. Overland, Eds., pp. 33–46, AGU Geophysical Monograph 85, Washington, DC, USA, 1994.
[20]  I. A. Dmitrenko, S. A. Kirillov, V. V. Ivanov et al., “Seasonal modification of the Arctic Ocean intermediate water layer off the eastern Laptev Sea continental shelf break,” Journal of Geophysical Research C, vol. 114, no. 6, Article ID C06010, 2009.
[21]  K. Aagaard, A. Foldvik, and S. R. Hillman, “The west spitsbergen current: disposition and water mass transformation,” Journal of Geophysical Research, vol. 92, no. C4, pp. 3778–3784, 1987.
[22]  M. A. Maqueda, A. J. Willmott, and N. R. T. Biggs, “Polynya dynamics: a review of observations and modeling,” Reviews of Geophysics, vol. 42, no. 1, Article ID RG1004, 37 pages, 2004.
[23]  S. Hakkinen and D. J. Cavalieri, “A study of oceanic surface heat fluxes in the Greenland, Norwegian, and Barents Seas,” Journal of Geophysical Research, vol. 94, no. 5, pp. 6145–6157, 1989.
[24]  U. Schauer, E. Fahrbach, S. Osterhus, and G. Rohardt, “Arctic warming through the fram strait: oceanic heat transport from 3 years of measurements,” Journal of Geophysical Research C, vol. 109, no. 6, Article ID C06026, 14 pages, 2004.
[25]  B. Rudels, E. P. Jones, U. Schauer, and P. Eriksson, “Atlantic sources of the Arctic Ocean surface and halocline waters,” Polar Research, vol. 23, no. 2, pp. 181–208, 2004.
[26]  N. Untersteiner, “On the mass and heat balance of Arctic sea ice,” Archives for Meteorology, Geophysics and Bioclimatology, vol. 12, pp. 151–182, 1961.
[27]  D. Cavalieri, C. Parkinson, P. Gloersen, and H. J. Zwally, Updated Yearly. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, 1979–2010, National Snow and Ice Data Center. Digital Media, Boulder, Colo, USA, 1996.
[28]  R. Kwok and G. F. Cunningham, “ICESat over Arctic sea ice: estimation of snow depth and ice thickness,” Journal of Geophysical Research C, vol. 113, no. 8, Article ID C08010, 2008.
[29]  R. Kwok, “Outflow of Arctic ocean sea ice into the Greenland and Barent seas: 1979–2007,” Journal of Climate, vol. 22, no. 9, pp. 2438–2457, 2009.
[30]  S. Smirnov and A. Korablev, “A regional oceanographic database for the Nordic Seas: from observations to climatic dataset,” in Proceedings of the International Conference on Marine Data and Information Systems (IMDIS '10), p. 81, Paris, France, March 2010.
[31]  I. V. Polyakov, A. Beszczynska, E. C. Carmack et al., “One more step toward a warmer Arctic,” Geophysical Research Letters, vol. 32, no. 17, Article ID L17605, pp. 1–4, 2005.
[32]  I. A. Dmitrenko, I. V. Polyakov, S. A. Kirillov et al., “Toward a warmer Arctic Ocean: spreading of the early 21st century Atlantic water warm anomaly along the Eurasian basin margins,” Journal of Geophysical Research C, vol. 113, no. 5, Article ID C05023, 2008.
[33]  S. Martin and D. J. Cavalieri, “Contribution of the Siberian shelf to the Arctic ocean intermediate and deep water,” Journal of Geophysical Research, vol. 94, no. 12, pp. 12725–12738, 1989.
[34]  V. F. Zakharov, Sea Ice in the Climate System, Hydrometeoizdat, St. Petersburg, Russia, 1996.
[35]  S. D. Smith, R. D. Muench, and C. H. Pease, “Polynyas and leads: an overview of physical processes and environment,” Journal of Geophysical Research, vol. 95, no. C6, pp. 9461–9479, 1990.
[36]  T. Uttal, J. A. Curry, M. G. McPhee et al., “Surface heat budget of the arctic ocean,” Bulletin of the American Meteorological Society, vol. 83, no. 2, pp. 255–275, 2002.
[37]  I. A. Repina and A. S. Smirnov, “Heat and momentum exchange between the atmosphere and ice from the observational data obtained in the region of Franz Josef Land,” Atmospheric and Ocean Physics, vol. 36, no. 5, pp. 618–626, 2000.
[38]  S. Marcq and J. Weiss, “Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere,” The Cryosphere, vol. 6, pp. 143–156, 2012.
[39]  K. Aagaard, L. K. Coachman, and E. Carmack, “On the halocline of the Arctic Ocean,” Deep Sea Research A, vol. 28, no. 6, pp. 529–545, 1981.
[40]  I. V. Polyakov, V. A. Alexeev, I. M. Ashik et al., “Fate of early 2000's arctic warm water pulse,” Bulletin of the American Meteorological Society, vol. 92, no. 5, pp. 561–566, 2011.
[41]  I. V. Polyakov, G. V. Alekseev, L. A. Timokhov et al., “Variability of the intermediate Atlantic water of the Arctic ocean over the last 100 years,” Journal of Climate, vol. 17, no. 23, pp. 4485–4497, 2004.
[42]  W. Meier, F. Fetterer, K. Knowles, M. Savoie, and M. J. Brodzik, Updated Quarterly. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, 2010, National Snow and Ice Data Center. Digital Media, Boulder, Colo, USA, 2006.
[43]  N. V. Koldunov, D. Stammer, and J. Marotzke, “Present-day arctic sea ice variability in the coupled ECHAM5/MPI-OM model,” Journal of Climate, vol. 23, no. 10, pp. 2520–2543, 2010.
[44]  D. P. Dee, S. M. Uppala, A. J. Simmons et al., “The ERA-Interim reanalysis: configuration and performance of the data assimilation system,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 656, pp. 553–597, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133