In the last decades, a very important breakthrough has been brought about in the elementary particle physics by the discovery of the phenomenon of the neutrino oscillations, which has shown neutrino properties beyond the Standard Model. But a full understanding of the various aspects of the neutrino oscillations is far to be achieved. In this paper the theoretical background of the neutrino oscillation phenomenon is described, referring in particular to the paradigmatic models. Then the various techniques and detectors which studied neutrinos from different sources are discussed, starting from the pioneering ones up to the detectors still in operation and to those in preparation. The physics results are finally presented adopting the same research path which has been crossed by this long saga. The problems not yet fixed in this field are discussed, together with the perspectives of their solutions in the near future. 1. Introduction Neutrino studies brought us to some of the most relevant breakthroughs in particle physics of last decades. In spite of that, the neutrino properties are still far to be completely understood. The discovery of the oscillation phenomenon produced quite a revolution in the Standard Model of elementary particles, especially through the direct evidence of a nonzero neutrino mass. The first idea of neutrino oscillations was considered by Pontecorvo in 1957 [1–3], before any experimental indication of this phenomenon. After several-decades-lasting saga of experimental and theoretical research, many questions are still open around the interpretation of this phenomenon and on the correlated aspects, on the oscillation parameters, on the neutrino masses, on the mass hierarchy, on CP violation in the leptonic sector, and on a possible existence of a fourth, sterile neutrino. The generally accepted MSW model [4–6] to interpret solar neutrino oscillations is presently validated for the oscillation in vacuum and in matter, but not yet in the vacuum-matter transition region. The shape of this transition could be influenced in a relevant way, as suggested by various theories going beyond the Standard Model as, for example, the nonstandard neutrino interactions and a possible existence of a very light sterile neutrino. For this reason, the transition region deserves further and refined experimental studies. Checks on the neutrino oscillations are under way through several experiments in data-taking phase, while few others are in preparation or even construction. These projects exploit various approaches, for example, neutrino-flavor
References
[1]
B. Pontecorvo, “Mesonium and anti-mesonium,” Soviet Physics JETP, vol. 6, p. 429, 1957.
[2]
B. Pontecorvo, “Mesonium and anti-mesonium,” Journal of Experimental and Theroretical Physics, vol. 33, pp. 549–551, 1957.
[3]
B. Pontecorvo, “Inverse beta processes and nonconservation of lepton charge,” Journal of Experimental and Theroretical Physics, vol. 34, p. 247, 1958.
[4]
L. Wolfenstein, “Neutrino oscillations in matter,” Physical Review D, vol. 17, no. 9, pp. 2369–2374, 1978.
[5]
S. P. Mikheyev and A. Yu. Smirnov, “Resonance amplification of oscillations in matter and spectroscopy of solar neutrinos,” Soviet Journal of Nuclear Physics, vol. 42, no. 1, pp. 913–917, 1985.
[6]
S. P. Mikheyev and A. Yu. Smirnov, “Resonant amplification of ν oscillations in matter and solar-neutrino spectroscopy,” Il Nuovo Cimento C, vol. 9, no. 1, pp. 17–27, 1986.
[7]
C. Giunti and C. W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press, New York, NY, USA, 2007.
[8]
S. M. Bilenky, C. Giunti, and W. Grimus, “Phenomenology of neutrino oscillations,” Progress in Particle and Nuclear Physics, vol. 43, no. 1, pp. 1–86, 1999.
[9]
A. Strumia and F. Vissani, “Neutrino masses, mixings and …,” http://arxiv.org/abs/hep-ph/0606054.
[10]
J. Beringer, J.-F. Arguin, R. M. Barnett, et al., “Review of particle physics,” Physical Review D, vol. 86, no. 1, Article ID 010001, 1528 pages, 2012.
[11]
S. M. Bilenk, J. Hosek, and S. T. Petcov, “On scillations of neutrinos with dirac and majorana masses,” Physics Letters B, vol. 94, no. 4, pp. 495–498, 1980.
[12]
M. Blennow and A. Y. Smirnov, “Neutrino propagation in matter,” Advances in High Energy Physics, vol. 2013, Article ID 972485, 33 pages, 2013.
[13]
T. K. Kuo and J. Pantaleone, “Nonadiabatic neutrino oscillations in matter,” Physical Review D, vol. 39, no. 7, pp. 1930–1939, 1989.
[14]
T. K. Kuo and J. Pantaleone, “Neutrino oscillations in matter,” Reviews of Modern Physics, vol. 61, no. 4, pp. 937–979, 1989.
[15]
A. M. Serenelli, W. C. Haxton, and C. Pe?a-Garay, “Solar models with accretion. I. Application to the solar abundance problem,” The Astrophysical Journal, vol. 743, no. 1, pp. 24–28, 2011.
[16]
Y. Fukuda, T. Hayakawa, E. Ichihara, et al., “Evidence for oscillation of atmospheric neutrinos,” Physical Review Letters, vol. 81, no. 8, pp. 1562–1567, 1998.
[17]
Y. Ashie, J. Hosaka, K. Ishihara, et al., “Evidence for an oscillatory signature in atmospheric neutrino oscillation,” Physical Review Letters, vol. 93, no. 10, Article ID 101801, 6 pages, 2004.
[18]
G. Bellini, J. Benziger, D. Bick, et al., “Absence of a day-night asymmetry in the 7Be solar neutrino rate in Borexino,” Physics Leters B, vol. 707, no. 1, pp. 22–26, 2012.
[19]
S. Abe, T. Ebihara, S. Enomoto, et al., “Precision measurement of neutrino oscillation parameters with KamLAND,” Physical Review Letters, vol. 100, no. 22, Article ID 221803, 5 pages, 2008.
[20]
G. DeLellis, Talk at the meeting of the Gran Sasso Laboratory Scientific Committee, private communication, March 2013.
[21]
G. Bellini, A. Ianni, and G. Ranucci, “Borexino and solar neutrinos,” Rivista del Nuovo Cimento, vol. 35, no. 9, pp. 481–537, 2012.
[22]
G. Bellini, J. Benziger, D. Bick, et al., “First evidence of pep solar neutrinos by direct detection in Borexino,” Physical Review Letters, vol. 108, no. 5, Article ID 051302, 6 pages, 2012.
[23]
A. A. Aguilar-Arevalo, B. C. Brown, L. Bugel, et al., “Improved search for oscillations in the MiniBooNE experiment,” Physical Review Letters, vol. 110, no. 16, Article ID 161801, 2013.
[24]
B. T. Clevel, T. Daily, R. Davis Jr. et al., “Measurement of the solar electron neutrino flux with the homestake chlorine detector,” The Astrophysical Journal, vol. 496, no. 1, pp. 505–526, 1998.
[25]
J. N. Bahcall, Neutrino Astrophysics, Cambridge University Press, Cambridge, UK, 1989.
[26]
W. Hampel, J. Handt, G. Heusser et al., “GALLEX solar neutrino observations: results for GALLEX IV,” Physics Letters B, vol. 447, no. 1-2, pp. 127–133, 1999.
[27]
J. N. Abdurashitov, V. N. Gavin, S. V. Girin, et al., “Measurement of the solar neutrino capture rate with gallium metal,” Physical Review C, vol. 60, no. 5, Article ID 055801, 32 pages, 1999.
[28]
J. N. Abdurashitov, V. N. Gavrin, V. V. Gorbachev et al., “Measurement of the solar neutrino capture rate with gallium metal. III. Results for the 2002–2007 data-taking period,” Physical Review C, vol. 80, no. 1, Article ID 015807, 2009.
[29]
N. Grevesse and A. J. Sauval, “Standard solar composition,” Space Science Reviews, vol. 85, no. 1-2, pp. 161–174, 1998.
[30]
M. Asplund, N. Grevesse, A. J. Sauval, and P. Scot, “The chemical composition of the sun,” Annual Reviews of Astronomy and Astrophysics, vol. 47, pp. 481–522, 2009.
[31]
Q. R. Amhad, R. C. Allen, T. C. Andersen, et al., “Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory,” Physical Review Letters, vol. 89, no. 1, Article ID 011301, 6 pages, 2002.
[32]
B. Aharmim, S. N. Ahmed, J. F. Amsbaugh, et al., “Measurement of the and total 8B solar neutrino fluxes with the sudbury neutrino observatory phase-III data set,” Physical Review C, vol. 87, no. 1, Article ID 015502, 43 pages, 2013.
[33]
M. C. Gonzalez-Garcia, M. Maltoni, J. Salvado, T. Schwetz, et al., “Global fit to three neutrino mixing: critical look at present precision,” Journal of High Energy Physics, vol. 12, article 123, 2012.
[34]
F. Kaether, W. Hampel, G. Heusser, J. Kiko, and T. Kirsten, “Reanalysis of the GALLEX solar neutrino flux and source experiments,” Physics Letters B, vol. 685, no. 1, pp. 47–54, 2010.
[35]
J. N. Abdurashitov, V. N. Gavrin, S. V. Girin et al., “Measurement of the response of a gallium metal solar neutrino experiment to neutrinos from a 51Cr source,” Physical Review C, vol. 59, no. 4, pp. 2246–2263, 1999.
[36]
J. N. Abdurashitov, V. N. Gavrin, S. V. Girin, et al., “Measurement of the response of a Ga solar neutrino experiment to neutrinos from a 37Ar source,” Physical Review C, vol. 73, no. 4, Article ID 045805, 12 pages, 2006.
[37]
M. A. Acero, C. Giunti, and M. Laveder, “Limits on and disappearance from Gallium and reactor experiments,” Physical Review D, vol. 78, no. 7, Article ID 073009, 2008.
[38]
B. Aharmin, S. N. Ahmed, A. E. Anthony, et al., “Combined analysis of all three phases of solar neutrino data from the sudbury neutrino observatory,” Physical Review C, vol. 88, no. 2, Article ID 025501, 27 pages, 2011.
[39]
S. Fukuda, Y. Fukuda, T. Hayakawa, et al., “The super-kamiokande detector,” Nuclear Instruments and Methods in Physics Research Section A, vol. 501, no. 2-3, pp. 418–462, 2003.
[40]
K. Hirata, T. Kajita, T. Kifune, et al., “Observation of 8B solar neutrinos in the kamiokande-II detector,” Physical Review Letters, vol. 63, no. 1, pp. 16–19, 1989.
[41]
R. Becker-Szendy, C. B. Bratton, D. Casper, et al., “Search for muon neutrino oscillations with the Irvine-Michigan-Brookhaven detector,” Physical Review Letters, vol. 69, no. 7, pp. 1010–1013, 1992.
[42]
M. H. Ahn, E. Aliu, S. Andringa, et al., “Measurement of neutrino oscillation by the K2K experiment,” Physical Review D, vol. 74, no. 7, Article ID 072003, 39 pages, 2006.
[43]
K. Abe, N. Abgrall, Y. Ajima, et al., “Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam,” Physical Review Letters, vol. 107, no. 4, Article ID 041801, 8 pages, 2011.
[44]
F. Reines and C. L. Cowan Jr., “Detection of the free neutrino,” Physical Review, vol. 92, no. 3, pp. 830–831, 1953.
[45]
E. N. Alekseev, L. N. Alekseeva, V. N. Bakatanov et al., “The baksan underground scintillation telescope,” Physics of Particles and Nuclei, vol. 29, no. 3, pp. 254–256, 1998.
[46]
M. Aglietta, G. Badino, G. F. Bologna et al., “Results of the liquid scintillation detector of the mont blanc laboratory,” Il Nuovo Cimento C, vol. 9, no. 2, pp. 185–195, 1986.
[47]
M. Aglietta, B. Alpat, E. D. Alyea, et al., “The most powerful scintillator supernovae detector: LVD,” II Nuovo Cimento A, vol. 105, no. 12, pp. 1793–1804, 1992.
[48]
G. Zacek, F. V. Feilitzsch, R. L. M?ssbauer et al., “Neutrino-oscillation experiments at the G?sgen nuclear power reactor,” Physical Review D, vol. 34, no. 9, pp. 2621–2636, 1986.
[49]
M. Abbes, B. Achkar, S. Ait-Boubker, et al., “The bugey 3 neutrino detector,” Nuclear Instruments and Methods in Physics Research Section A, vol. 374, pp. 164–187, 1996.
[50]
G. Alimonti, C. Arpesella, H. Back, et al., “The Borexino detector at the laboratori nazionali delran sasso,” Nuclear Instruments and Methods in Physics Research Section A, vol. 600, no. 3, pp. 568–593, 2009.
[51]
G. Alimonti, C. Arpesella, M. B. Avanzini, et al., “The liquid handling systems for the Borexino solar neutrino detector,” Nuclear Instruments and Methods in Physics Research Section A, vol. 609, no. 1, pp. 58–78, 2009.
[52]
F. P. An, J. Z. Bai, A. B. Balantekin, et al., “Observation of electron-antineutrino disappearance at daya bay,” Physical Review Letters, vol. 108, no. 17, Article ID 171803, 7 pages, 2012.
[53]
J. K. Ahn, S. Chebotaryov, J. H. Choi, et al., “Observation of reactor electron antineutrinos disappearance in the RENO experiment,” Physical Review Letters, vol. 108, no. 19, Article ID 191802, 6 pages, 2012.
[54]
Y. Abe, C. Aberle, J. C. dos Anjos, et al., “First measurement of from delayed neutron capture on hydrogen in the Double Chooz experiment,” Physics Letters B, vol. 723, no. 1–3, pp. 66–70, 2013.
[55]
A. Aguilar, L. B. Auerbach, R. L. Burman, et al., “Evidence for neutrino oscillations from the observation of appearance in a beam,” Physical Review D, vol. 64, no. 11, Article ID 112007, 22 pages, 2001.
[56]
H. Gemmeke, V. Eberhard, H. Gemmeke, et al., “The high resolution neutrino calorimeter KARMEN,” Nuclear Instruments and Methods in Physcis Research A, vol. 289, no. 3, pp. 490–495, 1990.
[57]
G. Giacomelli and A. Margiotta, “MACRO results on atmospheric neutrinos,” Nuclear Physics B—Proceedings Supplements, vol. 145, no. 1–3, pp. 116–119, 2005.
[58]
D. G. Michael, P. Adamson, T. Alexopoulos, et al., “Observation of muon neutrino disappearance with the MINOS detectors in the NuMI neutrino beam,” Physical Review Letters, vol. 97, no. 19, Article ID 191801, 6 pages, 2006.
[59]
N. Agafonova, A. Aleksandrov, O. Altinok, et al., “Search for oscillation with the OPERA experiment in the CNGS beam,” New Journal of Physics, vol. 14, Article ID 033017, 2012.
[60]
D. Macina, J. Konijn, R. G. C. Oldeman, et al., “The CHORUS experiment,” Nuclear Physics B—Proceedings Supplements, vol. 48, no. 1–3, pp. 183–187, 1996.
[61]
J. Altegoer, M. Anfreville, C. Angelini, et al., “The NOMAD experiment at the CERN SPS,” Nuclear Instruments and Methods in Physics Research Section A, vol. 404, pp. 96–128, 1998.
[62]
C. Rubbia, M. Antonello, P. Aprili, et al., “Underground operation of the ICARUS T600 LAr-TPC: first results,” Journal of Instrumentation, vol. 6, Article ID P07011, 2011.
[63]
V. Castellani, S. Degl'Innocenti, G. Fiorentini, M. Lissia, and B. Ricci, “Solar neutrinos: beyond standard solar models,” Physics Report, vol. 281, no. 5-6, pp. 309–398, 1997.
[64]
S. Basu and H. M. Antia, “Helioseismology and solar abundances,” Physics Reports, vol. 457, no. 5-6, pp. 217–283, 2008.
[65]
M. Honda, T. Kajita, K. Kasahara, and S. Midorikawa, “Calculation of the flux of atmospheric neutrinos,” Physical Review D, vol. 52, no. 9, pp. 4985–5005, 1995.
[66]
M. Honda, K. Kasahara, K. Hidaka, and S. Midorikawa, “Atmospheric neutrino fluxes,” Physics Letters B, vol. 248, no. 1-2, pp. 193–198, 1990.
[67]
G. Barr, T. K. Gaisser, and T. Stanev, “Flux of atmospheric neutrinos,” Physical Review D, vol. 39, no. 11, pp. 3532–3534, 1989.
[68]
V. Agrawal, T. K. Gaisser, P. Lipari, and T. Stanev, “Atmospheric neutrino flux above 1 GeV,” Physical Review D, vol. 53, no. 3, pp. 1314–1323, 1996.
[69]
T. K. Gaisser and T. Stanev, “An improved calculation of the atmospheric neutrino flux in the GeV range,” in Proceedings of the 24th International Cosmic Ray Conference, vol. 1, pp. 694–697, Rome, Italy, August 1995.
[70]
P. Vogel, G. K. Schenter, F. M. Mann, and R. E. Schenter, “Reactor antineutrino spectra and their application to antineutrino-induced reactions. II,” Physical Review C, vol. 24, no. 4, pp. 1543–1553, 1981.
[71]
P. Huber and T. Schwetz, “Precision spectroscopy with reactor antineutrinos,” Physical Review D, vol. 70, no. 5, Article ID 053011, 12 pages, 2004.
[72]
Th. A. Mueller, D. Lhuillier, M. Fallot, et al., “Improved predictions of reactor antineutrino spectra,” Physical Review C, vol. 83, no. 5, Article ID 054615, 17 pages, 2011.
[73]
P. Huber, “Determination of antineutrino spectra from nuclear reactors,” Physical Review C, vol. 84, no. 2, Article ID 024617, 16 pages, 2012.
[74]
P. C. de Holanda and A. Y. Smirnov, “Solar neutrino spectrum, sterile neutrinos, and additional radiation in the universe,” Physical Review D, vol. 83, no. 11, Article ID 113011, 2011.
[75]
K. S. Hirata, K. Inoue, T. Ishida et al., “Real-time, directional measurement of 8B solar neutrinos in the Kamiokande II detector,” Physical Review D, vol. 44, no. 8, pp. 2241–2260, 1991.
[76]
K. S. Hirata, T. Kajita, M. Koshiba, et al., “Experimental study of the atmospheric neutrino flux,” Physical Letters B, vol. 205, pp. 416–420, 1988.
[77]
B. Aharmim, S. N. Ahmed, A. E. Anthony, et al., “Low-energy-threshold analysis of the phase I and phase II data sets of the sudbury neutrino observatory,” Physical Review C, vol. 81, no. 5, Article ID 055504, 49 pages, 2010.
[78]
K. Abe, Y. Hayato, T. Iida, et al., “Solar neutrino results in super-kamiokande-III,” Physical Review D, vol. 83, no. 5, Article ID 052010, 19 pages, 2011.
[79]
K. Eguchi, S. Enomoto, K. Furuno, et al., “First results from KamLAND: ervidence for reactor arnti-neutrino disappearance,” Physical Review Letters, vol. 90, no. 2, Article ID 021802, 6 pages, 2003.
[80]
E. Aliu, S. Andringa, S. Aoki, et al., “Evidence for muon neutrino oscillation in an accelerator-based experiment,” Physical Review Letters, vol. 94, no. 8, Article ID 081802, 5 pages, 2005.
[81]
S. Yamamoto, J. Zalipska, E. Aliu, et al., “An improved search for oscillation in a long-baseline accelerator experiment,” Physical Review Letters, vol. 96, no. 18, Article ID 181801, 5 pages, 2006.
[82]
P. Adamson, C. Andreopoulos, D. J. Auty, et al., “First direct observation of muon antineutrino disappearance,” Physical Review Letters, vol. 107, no. 2, Article ID 021801, 5 pages, 2011.
[83]
P. Adamson, D. J. Auty, D. S. Ayres, et al., “Improved search for muon-neutrino to electron-neutrino oscillations in MINOS,” Physical Review Letters, vol. 107, no. 18, Article ID 181802, 6 pages, 2011.
[84]
G. Bellini, J. Benziger, D. Bick, et al., “Precision measurement of the 7Be solar neutrino interaction rate in Borexino,” Physical Review Letters, vol. 107, no. 14, Article ID 141302, 5 pages, 2011.
[85]
G. Bellini, J. Benziger, S. Bonetti, et al., “Measurement of the solar 8B neutrino rate with a liquid scintillator target and 3 MeV energy threshold in the Borexino detector,” Physical Review D, vol. 82, no. 3, Article ID 033006, 10 pages, 2010.
[86]
Y. Minakata and C. Pe?a-Garay, “Solar neutrino observables sensitive to matter effects,” Advances in High Energy Physics, vol. 2012, Article ID 349686, 15 pages, 2012.
[87]
P. C. de Holanda and A. Y. Smirnov, “Homestake result, sterile neutrinos, and low energy solar neutrino experiments,” Physical Review D, vol. 69, no. 11, Article ID 113002, 2004.
[88]
B. Armbruster, I. M. Blair, B. A. Bodmann, et al., “Upper limits for neutrino oscillations from muon decay at rest,” Physical Review D, vol. 65, no. 11, Article ID 112001, 16 pages, 2002.
[89]
F. P. An, Q. An, J. Z. Bai, et al., “Improved measurement of electron antineutrino disappearance at Daya Bay,” Chinese Physics C, vol. 37, no. 1, Article ID 011001, 2013.
[90]
K. Abe, N. Abgrall, Y. Ajima, et al., “First muon-neutrino disappearance study with an off-axis beam,” Physical Review D, vol. 85, no. 3, Article ID 031103, 8 pages, 2012.
[91]
G. L. Fogli, E. Lisi, A. Marrone, A. Palazzo, A. M. Rotunno, et al., “Evidence of from global neutrino data analysis,” Physical Review D, vol. 84, no. 5, Article ID 053007, 7 pages, 2011.
[92]
G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, and A. M. Rotunno, “Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches,” Physical Review D, vol. 86, no. 1, Article ID 013012, 10 pages, 2012.
[93]
R. Wendell, C. Ishihara, K. Abe, et al., “Atmospheric neutrino oscillation analysis with sub-leading effects in super-kamiokande I, II, and III,” Physical Review D, vol. 81, no. 9, Article ID 092004, 16 pages, 2010.
[94]
P. Adamson, D. S. Ayres, C. Backhouse, et al., “Improved measurement of muon antineutrino disappearance in MINOS,” Physical Review Letters, vol. 108, no. 19, Article ID 191801, 5 pages, 2012.
[95]
M. Apollonio, A. Baldini, C. Bemporad et al., “Limits on neutrino oscillations from the CHOOZ experiment,” Physics Letters B, vol. 466, no. 2–4, pp. 415–430, 1999.
[96]
A. Piepke, F. Boehma, and J. Busenitzb, “Final results from the Palo Verde neutrino oscillation experiment,” Progress in Particle and Nuclear Physics, vol. 48, no. 1, pp. 113–121, 2002.
[97]
Y. Abe, C. Aberle, J. C. dos Anjos, et al., “Reactor disappearance in the Double Chooz experiment,” Physical Review D, vol. 86, no. 5, Article ID 052008, 21 pages, 2012.
[98]
D. Dwyer, “Improved measurement of electronantineutrino disappearance at Daya Bay,” Nuclear Physics B Proceedings, vol. 2, pp. 1–3, 2013.
[99]
A. Gando, Y. Gando, K. Ichimura, et al., “Constraint on from a three-flavor oscillation analysis of reactor antineutrinos at KamLAND,” Physical Review D, vol. 83, no. 5, Article ID 052002, 11 pages, 2011.
[100]
J. Hosaka, K. Ishihara, J. Kameda, et al., “Solar neutrino measurements in super-kamiokande-I,” Physical Review D, vol. 73, no. 11, Article ID 112001, 33 pages, 2006.
[101]
D. Perevalov, “First data from the NOvA experiment,” in Proceedings of the 24th Workshop on Weak Interactions and Neutrinos (WIN'13), Natal, Brasil, 2013.
[102]
M. Shiozawa, “The hyper-kamiokande project,” Nuclear Physics B—Proceedings Supplements, vol. 237-238, pp. 289–294, 2013.
[103]
C. Aberle, A. Adelmann, J. Alonso, et al., “Whitepaper on the DAEdALUS program,” http://arxiv.org/abs/1307.2949.
[104]
C. Adams, T. Akiri, M. Andrews, et al., “Scientific opportunities with the long-baseline neutrino experiment,” http://arxiv.org/abs/1307.7335.
[105]
D. Angus, A. Ariga, D. Autiero, et al., “The LAGUNA design study—towards giant liquid based underground detectors for neutrino physics and astrophysics and proton decay searches,” http://arxiv.org/abs/1001.0077.
[106]
M. Ghosh, P. Ghoshal, S. Goswami, and S. K. Raut, “Synergies between neutrino oscillation experiments: an “adequate” configuration for LBNO,” http://arxiv.org/abs/1308.5979.
[107]
Y.-F. Li, J. Cao, Y. Wang, and L. Zhan, “Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos,” Physical Review D, vol. 88, no. 1, Article ID 013008, 9 pages, 2013.
[108]
M. G. Aartsen, R. Abbasi, Y. Abdou, et al., “PINGU sensitivity to the neutrino mass hierarchy,” http://arxiv.org/abs/1306.5846.
[109]
P. Coyle, “ORCA:oscillation research with cosmics in the Abyss,” in Proceedings of the Open Symposium on the European Strategy for Particle Physics (ESPP ’12), European Strategy Group Document under the Chair of the Scientific Secretary of the Strategy Session of CERN Council, Krakow, Poland.
[110]
C. Giunti and M. Laveder, “Statistical significance of the gallium anomaly,” Physical Review C, vol. 83, no. 6, Article ID 065504, 2011.
[111]
K. N. Abazajian, M. A. Acero, S. K. Agarwalla, et al., “Light sterile neutrinos: a white paper,” http://arxiv.org/abs/1204.5379.
[112]
G. Bellini, D. Bick, G. Bonfini, et al., “SOX: short distance neutrino oscillations with Borexino,” Journal of High Energy Physics, vol. 2013, article 38, 2013.
[113]
H. Chen, J. Farrell, F. Lanni, et al., “A proposal for a new experiment using the Booster and NuMI neutrino beamlines: MicrooBooNE,” Fermilab, 2007.
[114]
M. Antonello, D. Bagliani, B. Baibussinov, et al., “Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN,” in Proceedings of the Open Symposium on the European Strategy for Particle Physics (ESPP '12), pp. 1–10, Krakow, Poland, September 2012.