全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neutrino Mass from Cosmology

DOI: 10.1155/2012/608515

Full-Text   Cite this paper   Add to My Lib

Abstract:

Neutrinos can play an important role in the evolution of the universe, modifying some of the cosmological observables. In this contribution we summarize the main aspects of cosmological relic neutrinos, and we describe how the precision of present cosmological data can be used to learn about neutrino properties, in particular their mass, providing complementary information to beta decay and neutrinoless double-beta decay experiments. We show how the analysis of current cosmological observations, such as the anisotropies of the cosmic microwave background or the distribution of large-scale structure, provides an upper bound on the sum of neutrino masses of order 1?eV or less, with very good perspectives from future cosmological measurements which are expected to be sensitive to neutrino masses well into the sub-eV range. 1. Introduction The subject of this contribution is the role of neutrinos in cosmology, one of the best examples of the very close ties that have developed between nuclear physics, particle physics, astrophysics, and cosmology. Here we focus on the most interesting aspects related to the case of massive (and light) relic neutrinos, but many others that were left out can be found in [1, 2]. We begin with a description of the properties and evolution of the background of relic neutrinos that fills the universe. Then we review the possible effects of neutrino oscillations on cosmology. The topic of neutrinos and Big Bang Nucleosynthesis is reviewed in a different contribution to this special issue [3]. The largest part of this contribution is devoted to the impact of massive neutrinos on cosmological observables that can be used to extract bounds on neutrino masses from present data. Finally we discuss the sensitivities on neutrino masses from future cosmological experiments. Note that massive neutrinos could also play a role in the generation of the baryon asymmetry of the universe from a previously created lepton asymmetry. In these leptogenesis scenarios, one can also obtain quite restrictive bounds on light neutrino masses, which are, however, strongly model dependent. We do not discuss this subject here, it is covered in other contribution to this special issue [4]. For further details, the reader is referred to recent reviews on neutrino cosmology such as [5–7] and in particular [8]. A more general review on the connection between particle physics and cosmology can be found in [9]. 2. The Cosmic Neutrino Background The existence of a relic sea of neutrinos is a generic feature of the standard hot big bang model, in number only

References

[1]  A. D. Dolgov, “Neutrinos in cosmology,” Physics Reports, vol. 370, no. 4-5, pp. 333–535, 2002.
[2]  J. Lesgourgues, G. Mangano, G. Miele, and S. Pastor, Neutrino Cosmology, Cambridge University Press, Cambridge, UK, 2013.
[3]  G. Steigman, “Neutrinos and big bang nucleosynthesis,” Advances in High Energy Physics. In press.
[4]  E. Nardi, A. Riotto, and C. S. Fong, Leptogenesis in the Universe, Contribution to this Special issue.
[5]  S. Hannestad, “Primordial neutrinos,” Annual Review of Nuclear and Particle Science, vol. 56, pp. 137–161, 2006.
[6]  S. Hannestad, “Neutrino physics from precision cosmology,” Progress in Particle and Nuclear Physics, vol. 65, no. 2, pp. 185–208, 2010.
[7]  Y. Y. Y. Wong, “Neutrino mass in cosmology: status and prospects,” Annual Review of Nuclear and Particle Science, vol. 61, pp. 69–98, 2011.
[8]  J. Lesgourgues and S. Pastor, “Massive neutrinos and cosmology,” Physics Reports, vol. 429, no. 6, pp. 307–379, 2006.
[9]  M. Kamionkowski and A. Kosowsky, “The cosmic microwave background and particle physics,” Annual Review of Nuclear and Particle Science, vol. 49, no. 1, pp. 77–123, 1999.
[10]  E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley, Reading, Mass, USA, 1990.
[11]  S. Dodelson, Modern Cosmology, Academic Press, New York, NY, USA, 2003.
[12]  G. Mangano, G. Miele, S. Pastor, T. Pinto, O. Pisanti, and P. D. Serpico, “Relic neutrino decoupling including flavour oscillations,” Nuclear Physics B, vol. 729, no. 1-2, pp. 221–234, 2005.
[13]  F. Iocco, G. Mangano, G. Miele, O. Pisanti, and P. D. Serpico, “Primordial nucleosynthesis: from precision cosmology to fundamental physics,” Physics Reports, vol. 472, no. 1–6, pp. 1–76, 2009.
[14]  Particle Data Group Collaboration, “Review of particle physics,” Journal of Physics G, vol. 37, no. 7, Article ID 075021, 2010.
[15]  S. Sarkar, “Big bang nucleosynthesis and physics beyond the standard model,” Reports on Progress in Physics, vol. 59, no. 12, pp. 1493–1609, 1996.
[16]  G. Mangano and P. D. Serpico, “A robust upper limit on Neff from BBN, circa 2011,” Physics Letters B, vol. 701, no. 3, pp. 296–299, 2011.
[17]  E. Komatsu, K. M. Smith, J. Dunkley et al., “Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation,” Astrophysical Journal, vol. 192, supplement 2, p. 18, 2011.
[18]  J. Dunkley, R. Hlozek, J. Sievers, et al., “The Atacama Cosmology Telescope: cosmological parameters from the 2008 power spectra,” The Astrophysical Journal, vol. 739, no. 1, p. 52, 2011.
[19]  R. Keisler, C. L. Reichard, K. A. Aird, et al., “A measurement of the damping tail of the cosmic microwave background power spectrum with the South Pole telescope,” The Astrophysical Journal, vol. 743, no. 1, p. 28, 2011.
[20]  J. Hamann, “Evidence for extra radiation? Profile likelihood versus Bayesian posterior,” Journal of Cosmology and Astroparticle Physics, vol. 1203, p. 021, 2012.
[21]  G. L. Fogli, E. Lisi, A. Marrone, and A. Palazzo, “Global analysis of three-flavor neutrino masses and mixings,” Progress in Particle and Nuclear Physics, vol. 57, no. 2, pp. 742–795, 2006.
[22]  M. C. González-García and M. Maltoni, “Phenomenology with massive neutrinos,” Physics Reports, vol. 460, no. 1–3, pp. 1–129, 2008.
[23]  T. Schwetz, M. Tórtola, and J. W. F. Valle, “Global neutrino data and recent reactor fluxes: the status of three-flavour oscillation parameters,” New Journal of Physics, vol. 13, Article ID 063004, 2011.
[24]  H.-S. Kang and G. Steigman, “Cosmological constraints on neutrino degeneracy,” Nuclear Physics B, vol. 372, no. 1-2, pp. 494–520, 1992.
[25]  S. H. Hansen, G. Mangano, A. Melchiorri, G. Miele, and O. Pisanti, “Constraining neutrino physics with BBN and CMBR,” Physical Review D, vol. 65, p. 023511, 2002.
[26]  A. D. Dolgov, S. H. Hansen, S. Pastor, S. T. Petcov, G. G. Raffelt, and D. V. Semikoz, “Cosmological bounds on neutrino degeneracy improved by flavor oscillations,” Nuclear Physics B, vol. 632, no. 1–3, pp. 363–382, 2002.
[27]  Y. Y. Y. Wong, “Analytical treatment of neutrino asymmetry equilibration from flavor oscillations in the early universe,” Physical Review D, vol. 66, no. 2, Article ID 025015, 2002.
[28]  K. N. Abazajian, J. F. Beacom, and N. F. Bell, “Stringent constraints on cosmological neutrino-antineutrino asymmetries from synchronized flavor transformation,” Physical Review D, vol. 66, no. 1, Article ID 013008, 2002.
[29]  P. D. Serpico and G. G. Raffelt, “Lepton asymmetry and primordial nucleosynthesis in the era of precision cosmology,” Physical Review D, vol. 71, no. 12, Article ID 127301, 2005.
[30]  S. Pastor, T. Pinto, and G. G. Raffelt, “Relic density of neutrinos with primordial asymmetries,” Physical Review Letters, vol. 102, no. 24, Article ID 241302, 2009.
[31]  G. Mangano, G. Miele, S. Pastor, O. Pisanti, and S. Sarikas, “Constraining the cosmic radiation density due to lepton number with Big Bang Nucleosynthesis,” Journal of Cosmology and Astroparticle Physics, vol. 1103, no. 3, Article ID 035, 2011.
[32]  G. Mangano, G. Mielea, S. Pastor, O. Pisanti, and S. Sarikas, “Updated BBN bounds on the cosmological lepton asymmetry for non-zero ,” Physics Letters B, vol. 708, no. 1-2, pp. 1–5, 2012.
[33]  E. Castorina, U. Franca, M. Lattanzi, et al., “Cosmological lepton asymmetry with a nonzero mixing angle 13,” Physical Review D, vol. 86, no. 2, Article ID 023517, 11 pages, 2012.
[34]  K. N. Abazajian, M. A. Acero, S. K. Agarwalla, et al., “Light sterile neutrinos: a white paper,” In press, http://arxiv.org/abs/1204.5379.
[35]  D. Kirilova and M. Panayotova, “Relaxed big bang nucleosynthesis constraints on neutrino oscillation parameters,” Journal of Cosmology and Astroparticle Physics, no. 12, Article ID 014, 2006.
[36]  R. Barbieri and A. Dolgov, “Bounds on sterile neutrinos from nucleosynthesis,” Physics Letters B, vol. 237, no. 3-4, pp. 440–445, 1990.
[37]  S. Hannestad, I. Tamborra, and T. Tram, “Thermalisation of light sterile neutrinos in the early universe,” Journal of Cosmology and Astroparticle Physics, vol. 1207, p. 025, 2012.
[38]  A. D. Dolgov and F. L. Villante, “BBN bounds on active-sterile neutrino mixing,” Nuclear Physics B, vol. 679, no. 1-2, pp. 261–298, 2004.
[39]  M. Cirelli, G. Marandella, A. Strumia, and F. Vissani, “Probing oscillations into sterile neutrinos with cosmology, astrophysics and experiments,” Nuclear Physics B, vol. 708, no. 1–3, pp. 215–267, 2005.
[40]  A. Mirizzi, N. Saviano, G. Miele, and P. D. Serpico, “Light sterile neutrino production in the early universe with dynamical neutrino asymmetries,” Physical Review D, vol. 86, no. 5, Article ID 053009, 2012.
[41]  C. Giunti and M. Laveder, “Implications of 3+1 short-baseline neutrino oscillations,” Physics Letters B, vol. 706, no. 2-3, pp. 200–207, 2011.
[42]  R. Foot and R. R. Volkas, “Reconciling sterile neutrinos with big bang nucleosynthesis,” Physical Review Letters, vol. 75, no. 24, pp. 4350–4353, 1995.
[43]  C. T. Kishimoto and G. M. Fuller, “Lepton-number-driven sterile neutrino production in the early universe,” Physical Review D, vol. 78, no. 2, Article ID 023524, 2008.
[44]  D. V. Forero, M. A. Tortola, and J. W. F. Valle, “Global status of neutrino oscillation parameters after Neutrino-2012,” Physical Review D, vol. 86, no. 7, Article ID 073012, 2012.
[45]  G. L. Fogli, E. Lisi, A. Marrone, D. Montanino, and A. M. Palazzo, “Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP violation searches,” Physical Review D, vol. 86, no. 1, Article ID 013012, 2012.
[46]  M. C. González-García, M. Maltoni, J. Salvado, and T. Schwetz, “Global fit to three neutrino mixing: critical look at present precision,” In press, http://arxiv.org/abs/1209.3023.
[47]  A. Giuliani and A. Poves, “Neutrinoless double beta decay,” Advances in High Energy Physics. In press.
[48]  G. Drexlin, V. Hannen, S. Mertens, and C. Weinheimer, “Current direct neutrino mass measurements,” Advances in High Energy Physics. In press.
[49]  G. L. Fogli, E. Lisi, A. Marrone, et al., “Observables sensitive to absolute neutrino masses. II,” Physical Review D, vol. 78, no. 3, Article ID 033010, 2008.
[50]  M. C. González-García, M. Maltoni, and J. Salvado, “Robust cosmological bounds on neutrinos and their combination with oscillation results,” Journal of High Energy Physics, vol. 1008, p. 117, 2010.
[51]  J. R. Primack, “Whatever happened to hot dark matter?” SLAC Beam Line, vol. 31N3, pp. 50–57, 2001.
[52]  A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, “The role of sterile neutinos in cosmology and astrophysics,” Annual Review of Nuclear and Particle Science, vol. 59, pp. 191–214, 2009.
[53]  W. Hu, D. J. Eisenstein, and M. Tegmark, “Weighing neutrinos with galaxy surveys,” Physical Review Letters, vol. 80, no. 24, pp. 5255–5258, 1998.
[54]  A. Lewis, A. Challinor, and A. Lasenby, “Efficient computation of CMB anisotropies in closed FRW models,” The Astrophysical Journal, vol. 538, no. 2, p. 473, 2000.
[55]  J. Lesgourgues and T. Tram, “The cosmic linear anisotropy solving system (CLASS) IV: efficient implementation of non-cold relics,” Journal of Cosmology and Astroparticle Physics, vol. 1109, Article ID 032, 2011.
[56]  J. Brandbyge and S. Hannestad, “Resolving cosmic neutrino structure: a hybrid neutrino N-body scheme,” Journal of Cosmology and Astroparticle Physics, vol. 1005, no. 1, Article ID 021, 2010.
[57]  S. Bird, M. Viel, and M. G. Haehnelt, “Massive neutrinos and the non-linear matter power spectrum,” Monthly Notices of the Royal Astronomical Society, vol. 420, no. 3, Article ID 2551, 2012.
[58]  C. Wagner, L. Verde, and R. Jimenez, “Effects of the neutrino mass splitting on the non-linear matter power spectrum,” The Astrophysical Journal Letters, vol. 752, no. 2, p. L31, 2012.
[59]  J. Lesgourgues, S. Pastor, and L. Perotto, “Probing neutrino masses with future galaxy redshift surveys,” Physical Review D, vol. 70, no. 4, Article ID 045016, 2004.
[60]  R. Jimenez, T. Kitching, C. Pe?a-Garay, and L. Verde, “Can we measure the neutrino mass hierarchy in the sky?” Journal of Cosmology and Astroparticle Physics, vol. 1005, no. 5, Article ID 035, 2010.
[61]  J. R. Pritchard and E. Pierpaoli, “Constraining massive neutrinos using cosmological 21?cm observations,” Physical Review D, vol. 78, no. 6, Article ID 065009, 2008.
[62]  S. Dodelson, E. Gates, and A. Stebbins, “Cold + hot dark matter and the cosmic microwave background scott dodelson,” Astrophysical Journal Letters, vol. 467, no. 1, pp. 10–18, 1996.
[63]  K. Ichikawa, M. Fukugita, and M. Kawasaki, “Constraining neutrino masses by CMB experiments alone,” Physical Review D, vol. 71, no. 4, Article ID 043001, 2005.
[64]  W. L. Freedman, B. F. Madore, B. K. Gibson et al., “Final results from the Hubble Space Telescope key project to measure the Hubble constant,” Astrophysical Journal Letters, vol. 553, no. 1, pp. 47–72, 2001.
[65]  M. Moresco, “New constraints on cosmological parameters and neutrino properties using the expansion rate of the Universe to ,” Journal of Cosmology and Astroparticle Physics, vol. 1207, Article ID 053, 2012.
[66]  B. A. Reid, J. N. Chengalur, A. Begum, and I. D. Karachentsev, “Cosmological constraints from the clustering of the Sloan digital sky survey DR7 luminous red galaxies,” Monthly Notices of the Royal Astronomical Society, vol. 404, no. 1, pp. 60–63, 2010.
[67]  S. A. Thomas, F. B. Abdalla, and O. Lahav, “Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey,” Physical Review Letters, vol. 105, no. 3, Article ID 031301, 2010.
[68]  S. Riemer-Srensen, C. Blake, D. Parkinson, et al., “WiggleZ Dark energy survey: cosmological neutrino mass constraint from blue high-redshift galaxies,” Physical Review D, vol. 85, no. 8, Article ID 081101, 2012.
[69]  J.-Q. Xia, B. R. Granett, M. Viel, et al., “Constraints on massive neutrinos from the CFHTLS angular power spectrum,” Journal of Cosmology and Astroparticle Physics, vol. 1206, Article ID 010, 2012.
[70]  A. Mantz, S. W. Allen, D. Rapetti, and H. Ebeling, “The observed growth of massive galaxy clusters-I. Statistical methods and cosmological constraints,” Monthly Notices of the Royal Astronomical Society, vol. 406, no. 3, pp. 1759–1772, 2010.
[71]  B. A. Reid, L. Verde, R. Jimenez, and O. Mena, “Robust neutrino constraints by combining low redshift observations with the CMB,” Journal of Cosmology and Astroparticle Physics, vol. 1001, no. 1, Article ID 003, 2010.
[72]  I. Tereno, C. Schimd, J. P. Uzan, M. Kilbinger, F. H. Vincent, and L. Fu, “CFHTLS weak-lensing constraints on the neutrino masses,” Astronomy and Astrophysics, vol. 500, no. 2, pp. 657–665, 2009.
[73]  M. Viel, M. G. Haehnelt, and V. Springel, “The effect of neutrinos on the matter distribution as probed by the intergalactic medium,” Journal of Cosmology and Astroparticle Physics, vol. 2010, no. 6, Article ID 015, 2010.
[74]  S. Hannestad, “Neutrino masses and the dark energy equation of state:Relaxing the cosmological neutrino mass bound,” Physical Review Letters, vol. 95, no. 22, Article ID 221301, 2005.
[75]  K. N. Abazajian, E. Calabrese, A. Cooray, et al., “Cosmological and astrophysical neutrino mass measurements,” Astroparticle Physics, vol. 35, no. 4, pp. 177–184, 2011.
[76]  L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu, and Y. Y. Y. Wong, “Probing cosmological parameters with the CMB: forecasts from Monte Carlo simulations,” Journal of Cosmology and Astroparticle Physics, no. 0610, Article ID 013, 2006.
[77]  T. Okamoto and W. Hu, “CMB lensing reconstruction on the full sky,” Physical Review D, vol. 67, Article ID 083002, 2003.
[78]  S. Wang, Z. Haiman, W. Hu, J. Khoury, and M. May, “Weighing neutrinos with galaxy cluster surveys,” Physical Review Letters, vol. 95, no. 1, Article ID 011302, 2005.
[79]  T. Sekiguchi, K. Ichikawa, T. Takahashi, and L. Greenhill, “Neutrino mass from cosmology: impact of high-accuracy measurement of the Hubble constant,” Journal of Cosmology and Astroparticle Physics, vol. 1003, no. 3, Article ID 015, 2010.
[80]  S. Gratton, A. Lewis, and G. Efstathiou, “Prospects for constraining neutrino mass using Planck and Lyman-α forest data,” Physical Review D, vol. 77, no. 8, Article ID 083507, 2008.
[81]  O. Lahav, A. Kiakotou, F. B. Abdalla, and C. Blake, “Forecasting neutrino masses from galaxy clustering in the Dark Energy Survey combined with the Planck measurements,” Monthly Notices of the Royal Astronomical Society, vol. 405, no. 1, pp. 168–176, 2010.
[82]  T. Namikawa, S. Saito, and A. Taruya, “Probing dark energy and neutrino mass from upcoming lensing experiments of CMB and galaxies,” Journal of Cosmology and Astroparticle Physics, vol. 1012, no. 12, Article ID 027, 2010.
[83]  T. D. Kitching, A. F. Heavens, L. Verde, P. Serra, and A. Melchiorri, “Finding evidence for massive neutrinos using 3D weak lensing,” Physical Review D, vol. 77, no. 10, Article ID 103008, 2008.
[84]  C. Carbone, L. Verde, Y. Wang, and A. Cimatti, “Neutrino constraints from future nearly all-sky spectroscopic galaxy surveys,” Journal of Cosmology and Astroparticle Physics, vol. 1103, no. 3, Article ID 030, 2011.
[85]  S. Hannestad, H. Tu, and Y. Y. Y. Wong, “Measuring neutrino masses and dark energy with weak lensing tomography,” Journal of Cosmology and Astroparticle Physics, no. 6, Article ID 025, 2006.
[86]  J. R. Pritchard and A. Loeb, “21?cm cosmology,” Reports on Progress in Physics, vol. 75, Article ID 086901, 2012.
[87]  J. Lesgourgues, L. Perotto, S. Pastor, and M. Piat, “Probing neutrino masses with CMB lensing extraction,” Physical Review D, vol. 73, no. 4, Article ID 045021, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133