This paper presents two new algorithms that speed up the centroid computation of an interval type-2 fuzzy set. The algorithms include precomputation of the main operations and initialization based on the concept of uncertainty bounds. Simulations over different kinds of footprints of uncertainty reveal that the new algorithms achieve computation time reductions with respect to the Enhanced-Karnik algorithm, ranging from 40 to 70%. The results suggest that the initialization used in the new algorithms effectively reduces the number of iterations to compute the extreme points of the interval centroid while precomputation reduces the computational cost of each iteration. 1. Introduction Type-2 fuzzy logic systems (T2-FLS) theory and its applications have grown in recent years [1–3]. One of the main problems related to the implementation of these systems is type reduction, which computes the generalized centroid of a type-2 fuzzy set (T2-FS) [4–6]. This operation becomes computationally simpler when performed over a particular class of T2-FS, namely, interval type-2 fuzzy set (IT2-FS) [5, 7]. Basically, the centroid of an IT2-FS is an interval [3, 8]. Therefore, computing this centroid can be considered as an optimization problem that finds the extreme points that define the interval [6]. Fast computation of type reduction for IT2-FSs is an attractive problem, which is critical since type-reduction procedures for more general type-2 fuzzy sets (T2-FSs) make use of interval type-2 fuzzy computations [4, 9–11]. Up-to-date, several iterative approaches to computing type reduction for IT2-FSs have been proposed [5, 12–18]. The Karnik-Mendel (KM) algorithms are the most popular procedures used in interval type-2 fuzzy logic systems (IT2-FLS) [17]. It has been demonstrated that the KM algorithms converge monotonically and superexponentially fast. These properties are highly desirable in iterative algorithms [13]. However, KM procedures converge in several iterations and demand a considerable amount of arithmetic and memory look-up operations [7, 8, 12, 19], for real IT2-FLS implementations. In the case of IT2 fuzzy controllers, the computational cost of type reduction is an important subject [20, 21]. The overall complexity of the controller largely depends on the type-reduction and defuzzification stages. Thus developing strategies for reducing the computational burden and necessary resources for implementing these two stages is highly convenient. In addition, there are other applications of IT2-FLS in which the complexity of the hardware and software platforms
References
[1]
J. M. Mendel, “Advances in type-2 fuzzy sets and systems,” Information Sciences, vol. 177, no. 1, pp. 84–110, 2007.
[2]
R. John and S. Coupland, “Type-2 fuzzy logic: a historical view,” IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 57–62, 2007.
[3]
J. M. Mendel, “Type-2 fuzzy sets and systems: an overview,” IEEE Computational Intelligence Magazine, vol. 2, no. 1, pp. 20–29, 2007.
[4]
S. Coupland and R. John, “Geometric type-1 and type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 1, pp. 3–15, 2007.
[5]
J. Mendel, Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions, Prentice Hall, Upper Saddle River, NJ, USA, 2001.
[6]
J. M. Mendel, “On a 50% savings in the computation of the centroid of a symmetrical interval type-2 fuzzy set,” Information Sciences, vol. 172, no. 3-4, pp. 417–430, 2005.
[7]
H. Wu and J. M. Mendel, “Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems,” IEEE Transactions on Fuzzy Systems, vol. 10, no. 5, pp. 622–639, 2002.
[8]
D. Wu and W. W. Tan, “Computationally efficient type-reduction strategies for a type-2 fuzzy logic controller,” in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 353–358, May 2005.
[9]
C. Y. Yeh, W. H. R. Jeng, and S. J. Lee, “An enhanced type-reduction algorithm for type-2 fuzzy sets,” IEEE Transactions on Fuzzy Systems, vol. 19, no. 2, pp. 227–240, 2011.
[10]
C. Wagner and H. Hagras, “Toward general type-2 fuzzy logic systems based on zSlices,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 4, pp. 637–660, 2010.
[11]
J. M. Mendel, F. Liu, and D. Zhai, “α-Plane representation for type-2 fuzzy sets: theory and applications,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 1189–1207, 2009.
[12]
S. Coupland and R. John, “An investigation into alternative methods for the defuzzification of an interval type-2 fuzzy set,” in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1425–1432, July 2006.
[13]
J. M. Mendel and F. Liu, “Super-exponential convergence of the Karnik-Mendel algorithms for computing the centroid of an interval type-2 fuzzy set,” IEEE Transactions on Fuzzy Systems, vol. 15, no. 2, pp. 309–320, 2007.
[14]
K. Duran, H. Bernal, and M. Melgarejo, “Improved iterative algorithm for computing the generalized centroid of an interval type-2 fuzzy set,” in Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS '08), New York, NY, USA, May 2008.
[15]
K. Duran, H. Bernal, and M. Melgarejo, “A comparative study between two algorithms for computing the generalized centroid of an interval Type-2 Fuzzy Set,” in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 954–959, Hong Kong, China, June 2008.
[16]
D. Wu and J. M. Mendel, “Enhanced Karnik-Mendel algorithms,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 923–934, 2009.
[17]
X. Liu, J. M. Mendel, and D. Wu, “Study on enhanced Karnik-Mendel algorithms: Initialization explanations and computation improvements,” Information Sciences, vol. 184, no. 1, pp. 75–91, 2012.
[18]
D. Wu and M. Nie, “Comparison and practical implementation of type-reduction algorithms for type-2 fuzzy sets and systems,” in Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 2131–2138, June 2011.
[19]
M. Melgarejo, “A fast recursive method to compute the generalized centroid of an interval type-2 fuzzy set,” in Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS '07), pp. 190–194, June 2007.
[20]
R. Sepúlveda, O. Montiel, O. Castillo, and P. Melin, “Embedding a high speed interval type-2 fuzzy controller for a real plant into an FPGA,” Applied Soft Computing, vol. 12, no. 3, pp. 988–998, 2012.
[21]
R. Sepúlveda, O. Montiel, O. Castillo, and P. Melin, “Modelling and simulation of the defuzzification stage of a type-2 fuzzy controller using VHDL code,” Control and Intelligent Systems, vol. 39, no. 1, pp. 33–40, 2011.
[22]
O. Montiel, R. Sepúlveda, Y. Maldonado, and O. Castillo, “Design and simulation of the type-2 fuzzification stage: using active membership functions,” Studies in Computational Intelligence, vol. 257, pp. 273–293, 2009.
[23]
Y. Maldonado, O. Castillo, and P. Melin, “Optimization of membership functions for an incremental fuzzy PD control based on genetic algorithms,” Studies in Computational Intelligence, vol. 318, pp. 195–211, 2010.
[24]
C. Li, J. Yi, and D. Zhao, “A novel type-reduction method for interval type-2 fuzzy logic systems,” in Proceedings of the 5th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD '08), pp. 157–161, October 2008.
[25]
D. Wu, “Approaches for reducing the computational cost of logic systems: overview and comparisons,” IEEE Transactions on Fuzzy Systems, vol. 21, no. 1, pp. 80–90, 2013.
[26]
H. Hu, Y. Wang, and Y. Cai, “Advantages of the enhanced opposite direction searching algorithm for computing the centroid of an interval type-2 fuzzy set,” Asian Journal of Control, vol. 14, no. 6, pp. 1–9, 2012.
[27]
J. M. Mendel, R. I. John, and F. Liu, “Interval type-2 fuzzy logic systems made simple,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 6, pp. 808–821, 2006.