Cation and/or molecule transfer within nanoporous materials is utilized in lithium-ion secondary battery, ion exchange, hydrogen storage, molecular sensors, molecular filters, and so on. Here, we performed ab initio total energy calculation to derive the alkali cation potential in the Prussian blue analogues, ( , Na, K, Rb, and Cs; , Ni, Mn, and Cd), with jungle-gym-type nanoporous framework. The potential curves of larger cations, that is, K+, Rb+ and Cs+, exhibit a barrier at the window of the host framework, while those of the smaller cations, that is, Li+ and Na+, exhibit no barrier. We will discuss the useful functionalities observed in the Prussian blue analogues, that is, (a) battery properties mediated by Li+ intercalation/de-intercalation, (b) electrochromism mediated by Na+ transfer in all solid device, and (c) the elimination of Cs+ from aqueous solution by precipitation, in terms of the alkali cation potentials. 1. Introduction Nanoporous materials are attracting the increasing interest of material scientists because the materials are utilized in lithium-ion battery, ion exchange, hydrogen storage, molecular sensors, and molecular filters, and so on. To further improve the functionality, we need to comprehend the cation and molecular routes and their potential within the host framework. Among the nanoporous materials, the Prussian blue analogues, ( and are alkali metal and transition metal, resp.), are attracting current interest of material scientists because they exhibit useful functionalities, such as battery properties mediated by Li+ intercalation [1–8], electrochromism mediated by Na+ intercalation [9–16], and the elimination of Cs+ from aqueous solution by precipitation [17]. The Prussian blue analogue is the oldest complex compound that the human being synthesized. The compound is easily synthesized from cheap and ubiquitous source materials and, hence, has great advantage for commercial use of the above-mentioned functionalities. The Prussian blue analogue, , consists of a three-dimensional (3D) cyano-bridged transition metal framework ( ) and guests ( and H2O), as schematically shown in Figure 1. A part of the waters (ligand water: ) locates at the [Fe(CN)6] vacancies and coordinates to the transition metal. The residual waters (zeolite water: ) and alkali cations ( ) locate in the nanocubes of the host framework. Most of the Prussian blue analogues exhibit the face-centered cubic structure ( ; ) [18]. Figure 1: Schematic structure of the Prussian blue analogue, ( and are alkali metal and transition metal, resp.). Transition metal
References
[1]
N. Imanishi, T. Morikawa, J. Kondo et al., “Lithium intercalation behavior into iron cyanide complex as positive electrode of lithium secondary battery,” Journal of Power Sources, vol. 79, no. 2, pp. 215–219, 1999.
[2]
N. Imanishi, T. Morikawa, J. Kondo et al., “Lithium intercalation behavior of iron cyanometallates,” Journal of Power Sources, vol. 81-82, pp. 530–534, 1999.
[3]
M. Okubo, D. Asakura, Y. Mizuno et al., “Switching redox-active sites by valence tautomerism in prussian blue analogues ( , Rb): robust frameworks for reversible Li storage,” Journal of Physical Chemistry Letters, vol. 1, no. 14, pp. 2063–2071, 2010.
[4]
T. Matsuda and Y. Moritomo, “Thin film electrode of Prussian blue analogue for Li-ion battery,” Applied Physics Express, vol. 4, no. 4, Article ID 047101, 3 pages, 2011.
[5]
Y. Moritomo, M. Takachi, Y. Kurihara, and T. Matsuda, “Thin film electrode of Prussian blue analogue with fast Li+ intercalation,” Applied Physics Express, vol. 5, no. 4, Article ID 041801, 3 pages, 2012.
[6]
T. Matsuda and Y. Moritomo, “Two-electron reaction without structural phase transition in nanoporous cathode materials,” Journal of Nanotechnology, vol. 2012, Article ID 569814, 8 pages, 2012.
[7]
Y. Moritomo, Z. H. Zhu, M. Takachi, and T. Matsuda, “Fast discharge process of thin film electrode of Prussian ble analogues,” Japanese Journal of Applied Physics, vol. 51, no. 10, Article ID 107301, 4 pages, 2012.
[8]
M. Takachi, Y. Kurihara, and Y. Moritomo, “Channel size dependence of Li+ insertion/extraction in nanoporous hexacyanoferrates,” Materials Science and Engineering B, vol. 2, no. 8, pp. 452–457, 2012.
[9]
A. Gotoh, H. Uchida, M. Ishizaki et al., “Simple synthesis of three primary colour nanoparticle inks of Prussian blue and its analogues,” Nanotechnology, vol. 18, no. 34, Article ID 345609, 2007.
[10]
S. Hara, H. Tanaka, T. Kawamoto et al., “Electrochromic thin film of Prussian blue nanoparticles fabricated using wet process,” Japanese Journal of Applied Physics, vol. 46, no. 36–40, pp. L945–L947, 2007.
[11]
F. Nakada, H. Kamioka, Y. Moritomo, J. E. Kim, and M. Takata, “Electronic phase diagram of valence-controlled cyanide: (0<δ<0.61),” Physical Review B, vol. 77, no. 22, Article ID 224436, 2008.
[12]
T. Shibata, F. Nakada, H. Kamioka, and Y. Moritomo, “Magnetic and electronic properties of valence-controlled Ni-Fe cyanide,” Journal of the Physical Society of Japan, vol. 77, no. 10, Article ID 104714, 5 pages, 2008.
[13]
K. Igarashi, F. Nakada, and Y. Moritomo, “Electronic structure of hole-doped Co-Fe syanide (0<δ<0.85),” Physical Review B, vol. 78, no. 23, Article ID 235106, 6 pages, 2008.
[14]
T. Shibara and Y. Moritomo, “Quick response of all solid electrochromic device,” Applied Physics Express, vol. 2, no. 10, Article ID 105502, 3 pages, 2008.
[15]
Y. Moritomo and T. Shibara, “Electric pressure-induced ferromagnetism mediated by Prussian blue junction,” Applied Physics Letters, vol. 94, no. 4, Article ID 043502, 3 pages, 2009.
[16]
Y. Kurihara, H. Funashima, M. Ishida et al., “Electronic structure of hole-doped transition metal cyanides,” Journal of the Physical Society of Japan, vol. 79, no. 4, Article ID 044710, 2010.
[17]
A. Omura and Y. Moritomo, “Cs+ trapping in size-controlled nanospaces in hexacyanoferrates,” Applied Physics Express, vol. 5, no. 5, Article ID 057101, 3 pages, 2012.
[18]
T. Matsuda, J. E. Kim, K. Ohoyama, and Y. Moritomo, “Universal thermal response of the Prussian blue lattice,” Physical Review B, vol. 79, no. 17, Article ID 172302, 4 pages, 2009.
[19]
K. Itaya, I. Uchida, and V. D. Neff, “Electrochemistry of polynuclear transition metal cyanides: prussian blue and its analogues,” Accounts of Chemical Research?, vol. 19, no. 6, pp. 162–168, 1986.
[20]
N. Bagkar, C. A. Betty, P. A. Hassan, K. Kahali, J. R. Bellare, and J. V. Yakhmi, “Self-assembled films of nickel hexacyanoferrate: electrochemical properties and application in potassium ion sensing,” Thin Solid Films, vol. 497, no. 1-2, pp. 259–266, 2006.
[21]
W. Jin, A. Toutianoush, M. Pyrasch et al., “Self-assembled films of Prussian blue and analogues: structure and morphology, elemental composition, film growth, and nanosieving of ions,” Journal of Physical Chemistry B, vol. 107, no. 44, pp. 12062–12070, 2003.
[22]
M. Pyrasch, A. Toutianoush, W. Jin, J. Schnepf, and B. Tieke, “Self-assembled films of Prussian Blue and analogues: optical and electrochemical properties and application as ion-sieving membranes,” Chemistry of Materials, vol. 15, no. 1, pp. 245–254, 2003.
[23]
Y. Moritomo, K. Igarashi, J. Kim, and H. Tanaka, “Size dependent cation channel in nanoporous prussian blue lattice,” Applied Physics Express, vol. 2, no. 8, Article ID 085001, 3 pages, 2009.
[24]
P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, an augmented plane wave + local orbital program for calculating crystal properties, Karlheinz Schwarz,Technical University of Vienna, Vienna, Austria, 2001.
[25]
J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Physical Review Letters, vol. 77, no. 18, pp. 3865–3868, 1996.
[26]
Y. Moritomo, T. Matsuda, Y. Kurihara, and J. Kim, “Cubic-rhombohedral structural phase transition in ,” Journal of the Physical Society of Japan, vol. 80, no. 7, Article ID 074608, 2011.
[27]
J. E. Kim, K. Kato, M. Takata, T. Shibata, and Y. Moritomo, “Guest-host interaction of as investigated by a charge-density analysis,” Physical Review B, vol. 79, no. 13, Article ID 132105, 2009.
[28]
T. Matsuda, M. Takachi, and Y. Moritomo, “A sodium manganese ferrocyanide thin film for Na-ion batteries,” Chemical Communications, vol. 49, pp. 2750–2752, 2013.
[29]
E. Nishibori, M. Takata, K. Kato et al., “The large Debye-Scherrer camera installed at SPring-8 BL02B2 for charge density studies,” Nuclear Instruments and Methods in Physics Research A, vol. 467-468, Part 2, pp. 1045–1048, 2001.
[30]
F. Izumi and K. Momma, “Three-dimensional visualization in powder diffraction,” Solid State Phenomena, vol. 130, pp. 15–20, 2007.