全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mix and Inject: Reaction Initiation by Diffusion for Time-Resolved Macromolecular Crystallography

DOI: 10.1155/2013/167276

Full-Text   Cite this paper   Add to My Lib

Abstract:

Time-resolved macromolecular crystallography unifies structure determination with chemical kinetics, since the structures of transient states and chemical and kinetic mechanisms can be determined simultaneously from the same data. To start a reaction in an enzyme, typically, an initially inactive substrate present in the crystal is activated. This has particular disadvantages that are circumvented when active substrate is directly provided by diffusion. However, then it is prohibitive to use macroscopic crystals because diffusion times become too long. With small micro- and nanocrystals diffusion times are adequately short for most enzymes and the reaction can be swiftly initiated. We demonstrate here that a time-resolved crystallographic experiment becomes feasible by mixing substrate with enzyme nanocrystals which are subsequently injected into the X-ray beam of a pulsed X-ray source. 1. Enzymology The “unspent vital force” was the historical and metaphysical expression for a biological catalyst. It was eradicated in 1890 by an article worth almost 100 pages by O'Sullivan and Tompson [1], which probably denotes the beginning of what we know now as enzymology. The enzyme was originally thought to be the leaven in sour dough and then materialized as a chemical, a macromolecule, or something that can be manipulated, tested, and investigated. Similarities with chemical catalysts were discovered. This finally led to the nowadays well-established and important field of enzymology. In 1926 Sumner reported the purification and crystallization of the first enzyme, urease [2]. At that time, X-ray structure determination has been established starting in the first decade of the 20th century. Although the father of X-ray crystallography, Max von Laue, did not believe that it would be possible to determine atomic structures of enzymes with X-ray crystallography [3], the first structures of proteins were determined at the end of the 50s and the beginning of the 60s of the last century [4, 5]. Only then biologists learned to think in terms of 3D atomic structure of biological molecules. Structure-function relationships were discovered. Enzymes could be studied by directly seeing how, where, and in which orientation effectors were binding to the enzyme. Phenomena such as allosteric inhibition of enzyme activity first discovered by enzyme kineticists finally could be understood on the atomic length scale. This provided new venues, for example, to design new drugs to cure diseases. However, the atomic structures were still static. Enzymologists knew that catalysis must

References

[1]  C. O'Sullivan and F. W. Tompson, “LX.—Invertase: a contribution to the history of an enzyme or unorganised ferment,” Journal of the Chemical Society, Transactions, vol. 57, pp. 834–931, 1890.
[2]  J. B. Sumner, “The isolation and crystallization of the enzyme urease: preliminary paper,” The Journal of Biological Chemistry, vol. 69, pp. 435–441, 1926.
[3]  M. von Laue, Roentgenstrahlinterferenzen, Physik und Chemie und ihre Anwendungen in Einzeldarstellungen, Akademische Verlagsgesellschaft, Leipzig, Germany, 1942.
[4]  M. F. Perutz, “Relation between structure and sequence of h?moglobin,” Nature, vol. 194, no. 4832, pp. 914–917, 1962.
[5]  J. C. Kendrew, G. Bodo, H. M. Dintzis, R. G. Parrish, H. Wyckoff, and D. C. Phillips, “A three-dimensional model of the myoglobin molecule obtained by X-ray analysis,” Nature, vol. 181, no. 4610, pp. 662–666, 1958.
[6]  M. Schmidt, K. Achterhold, V. Prusakov, and F. G. Parak, “Protein dynamics of a β-sheet protein,” European Biophysics Journal, vol. 38, no. 5, pp. 687–700, 2009.
[7]  F. G. Parak, K. Achterhold, S. Croci, and M. Schmidt, “A physical picture of protein dynamics and conformational changes,” Journal of Biological Physics, vol. 33, no. 5-6, pp. 371–387, 2007.
[8]  K. Moffat, “Time-resolved macromolecular crystallography,” Annual Review of Biophysics and Biophysical Chemistry, vol. 18, pp. 309–332, 1989.
[9]  K. Moffat, “Time-resolved biochemical crystallography: a mechanistic perspective,” Chemical Reviews, vol. 101, no. 6, pp. 1569–1581, 2001.
[10]  M. Schmidt, S. Rajagopal, Z. Ren, and K. Moffat, “Application of singular value decomposition to the analysis of time-resolved macromolecular X-ray data,” Biophysical Journal, vol. 84, no. 3, pp. 2112–2129, 2003.
[11]  M. Schmidt, “Structure based enzyme kinetics by time-resolved X-ray crystallography,” in Ultrashort Laser Pulses in Medicine and Biology, W. Zinth, M. Braun, and P. Gilch, Eds., Biological and Medical Physics, Biomedical Engineering, Springer, Berlin, Germany, 2008.
[12]  M. Schmidt, R. Pahl, V. Vukica Srajer, et al., “Protein kinetics: structures of intermediates and reaction mechanism from time-resolved X-ray data,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 14, pp. 4799–4804, 2004.
[13]  Z. Ren and K. Moffat, “Quantitative-analysis of synchrotron laue diffraction patterns in macromolecular crystallography,” Journal of Applied Crystallography, vol. 28, pp. 461–481, 1995.
[14]  Z. Ren, D. Bourgeois, J. R. Helliwell, K. Moffat, V. ?rajer, and B. L. Stoddard, “Laue crystallography: coming of age,” Journal of Synchrotron Radiation, vol. 6, no. 4, pp. 891–917, 1999.
[15]  D. Greiffenberg and A. Collaboration, “The AGIPD detector for the European XFEL,” Journal of Instrumentation, vol. 7, 2012.
[16]  H. T. Philipp, M. Hromalik, M. Tate, L. Koerner, and S. M. Gruner, “Pixel array detector for X-ray free electron laser experiments,” Nuclear Instruments and Methods in Physics Research A, vol. 649, no. 1, pp. 67–69, 2011.
[17]  H. Graafsma, “Requirements for and development of 2 dimensional X-ray detectors for the European X-ray Free Electron Laser in Hamburg,” Journal of Instrumentation, vol. 4, no. 12, Article ID P12011, 2009.
[18]  G. Kuriso, A. Sugimoto, Y. Kai, and S. Harada, “A flow cell suitable for time-resolved X-ray crystallography by the Laue method,” Journal of Applied Crystallography, vol. 30, no. 1, part 5, pp. 555–556, 1997.
[19]  M. Schmidt, V. Srajer, N. Purwara, and S. Tripathia, “The kinetic dose limit in room-temperature time-resolved macromolecular crystallography,” Journal of Synchrotron Radiation, vol. 19, part 2, pp. 264–273, 2012.
[20]  J. E. Knapp, R. Pahl, V. ?rajer, and W. E. Royer, “Allosteric action in real time: time-resolved crystallographic studies of a cooperative dimeric hemoglobin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 20, pp. 7649–7654, 2006.
[21]  V. ?rajer, T. Y. Teng, T. Ursby et al., “Photolysis of the carbon monoxide complex of myoglobin: nanosecond time-resolved crystallography,” Science, vol. 274, no. 5293, pp. 1726–1729, 1996.
[22]  F. Schotte, M. Lim, T. A. Jackson et al., “Watching a protein as it functions with 150-ps time-resolved X-ray crystallography,” Science, vol. 300, no. 5627, pp. 1944–1947, 2003.
[23]  J. M. Key, V. Srajer, R. Pahl, and K. Moffat, “Time-resolved crystallographic studies of the heme domain of the oxygen sensor FixL: structural dynamics of ligand rebinding and their relation to signal transduction,” Biochemistry, vol. 46, no. 16, pp. 4706–4715, 2004.
[24]  H. Ihee, S. Rajagopal, V. Srajer et al., “Visualizing reaction pathways in photoactive yellow protein from nanoseconds to seconds,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 20, pp. 7145–7150, 2005.
[25]  D. Bourgeois, B. Vallone, A. Arcovito et al., “Extended subnanosecond structural dynamics of myoglobin revealed by Laue crystallography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 13, pp. 4924–4929, 2006.
[26]  M. Schmidt, K. Nienhaus, R. Pahl et al., “Ligand migration pathway and protein dynamics in myoglobin: a time-resolved crystallographic study on L29W MbCO,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 33, pp. 11704–11709, 2005.
[27]  S. Rajagopal, S. Anderson, V. Srajer, M. Schmidt, R. Pahl, and K. Moffat, “A structural pathway for signaling in the E46Q mutant of photoactive yellow protein,” Structure, vol. 13, no. 1, pp. 55–63, 2005.
[28]  S. Tripathi, V. Srajer, N. Purwar, R. Henning, and M. Schmidt, “pH dependence of the photoactive yellow protein photocycle investigated by time-resolved crystallography,” Biophysical Journal, vol. 102, no. 2, pp. 325–332, 2012.
[29]  B. Perman, V. ?rajer, Z. Ren et al., “Energy transduction on the nanosecond time scale: early structural events in a xanthopsin photocycle,” Science, vol. 279, no. 5358, pp. 1946–1950, 1998.
[30]  F. Schotte, H. S. Cho, V. R. Kaila et al., “Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 47, pp. 19256–19261, 2012.
[31]  B. L. Stoddard, B. E. Cohen, M. Brubaker, A. D. Mesecar, and D. E. Koshland, “Millisecond laue structures of an enzyme-product complex using photocaged substrate analogs,” Nature Structural Biology, vol. 5, no. 10, pp. 891–897, 1998.
[32]  I. Schlichting, J. Berendzen, K. Chu et al., “The catalytic pathway of cytochrome P450cam at atomic resolution,” Science, vol. 287, no. 5458, pp. 1615–1622, 2000.
[33]  I. Schlichting, G. Rapp, J. John, A. Wittinghofer, E. F. Pai, and R. S. Goody, “Biochemical and crystallographic characterization of a complex of c-Ha-ras p21 and caged GTP with flash photolysis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 86, no. 20, pp. 7687–7690, 1989.
[34]  E. M. H. Duke, S. Wakatsuki, A. Hadfield, and L. N. Johnson, “Laue and monochromatic diffraction studies on catalysis in phosphorylase b crystals,” Protein Science, vol. 3, no. 8, pp. 1178–1196, 1994.
[35]  S. Boutet, L. Lomb, G. J. Williams et al., et al., “High-resolution protein structure determination by serial femtosecond crystallography,” Science, vol. 337, no. 6092, pp. 362–364, 2012.
[36]  R. A. Kirian, X. Wang, U. Weierstall et al., “Femtosecond protein nanocrystallography—data analysis methods,” Optics Express, vol. 18, no. 6, pp. 5713–5723, 2010.
[37]  L. Redecke, K. Nass, D. P. DePonte et al., et al., “Natively inhibited Trypanosoma brucei cathepsin B structure determined by using an X-ray laser,” Science, vol. 339, no. 6116, pp. 227–230, 2012.
[38]  R. Koopmann, K. Cupelli, L. Redecke et al., et al., “In vivo protein crystallization opens new routes in structural biology,” Nature Methods, vol. 9, no. 3, pp. 259–262, 2012.
[39]  H. N. Chapman, P. Fromme, A. Barty et al., “Femtosecond X-ray protein nanocrystallography,” Nature, vol. 470, no. 7332, pp. 73–78, 2011.
[40]  R. Neutze and K. Moffat, “Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges,” Current Opinion in Structural Biology, vol. 22, no. 5, pp. 651–659, 2012.
[41]  S. R. Adams and R. Y. Tsien, “Controlling cell chemistry with caged compounds,” Annual Review of Physiology, vol. 55, pp. 755–784, 1993.
[42]  M. Goelder and R. Givens, Dynamic Studies in Biology: Phototriggers, Photoswitches and Caged Biomolecules, Wiley VCH, 2005.
[43]  T. Ursby, M. Weik, E. Fioravanti, M. Delarue, M. Goeldner, and D. Bourgeois, “Cryophotolysis of caged compounds: a technique for trapping intermediate states in protein crystals,” Acta Crystallographica Section D, vol. 58, no. 4, pp. 607–614, 2002.
[44]  I. Schlichting, S. C. Almo, G. Rapp et al., “Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis,” Nature, vol. 345, no. 6273, pp. 309–315, 1990.
[45]  B. L. Stoddard, P. Koenigs, N. Porter, K. Petratos, G. A. Petsko, and D. Ringe, “Observation of the light-triggered binding of pyrone to chymotrypsin by Laue X-ray crystallography,” Proceedings of the National Academy of Sciences of the United States of America, vol. 88, no. 13, pp. 5503–5507, 1991.
[46]  E. M. H. Duke, A. Hadfield, S. Walters, S. Wakatsuki, R. K. Bryan, and L. N. Johnson, “Time-resolved diffraction studies on glycogen phosphorylase b,” Philosophical Transactions of the Royal Society A, vol. 340, no. 1657, pp. 245–261, 1992.
[47]  A. J. Scheidig, E. F. Pai, I. Schlichting et al., “Time-resolved crystallography on H-ras p21,” Philosophical Transactions of the Royal Society A, vol. 340, no. 1657, pp. 263–272, 1992.
[48]  Y. O. Jung, J. H. Lee, J. Kim et al., “Volume-conserving trans-cis isomerization pathways in photoactive yellow protein visualized by picosecond X-ray crystallography,” Nature Chemistry, vol. 5, no. 3, pp. 212–220, 2013.
[49]  N. Purwar, J. M. McGarry, J. Kostera, A. A. Pacheco, and M. Schmidt, “Interaction of nitric oxide with catalase: structural and kinetic analysis,” Biochemistry, vol. 50, no. 21, pp. 4491–4503, 2011.
[50]  J. R. Helliwell, Y. P. Nieh, J. Raftery et al., “Time-resolved structures of hydroxymethylbilane synthase (Lys59Gln mutant) as it is loaded with substrate in the crystal determined by Laue diffraction,” Journal of the Chemical Society, vol. 94, no. 17, pp. 2615–2622, 1998.
[51]  A. Cornish-Bowden, Fundamentals of Enzyme Kinetics, Wiley-VCH, 4th edition, 2012.
[52]  M. Youngblut, E. T. Judd, V. Srajer et al., “Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system,” Journal of Biological Inorganic Chemistry, vol. 17, no. 4, pp. 647–662, 2012.
[53]  A. V. Cherepanov and S. De Vries, “Microsecond freeze-hyperquenching: development of a new ultrafast micro-mixing and sampling technology and application to enzyme catalysis,” Biochimica et Biophysica Acta, vol. 1656, no. 1, pp. 1–31, 2004.
[54]  D. P. Deponte, J. T. Mckeown, U. Weierstall, R. B. Doak, and J. C. H. Spence, “Towards ETEM serial crystallography: electron diffraction from liquid jets,” Ultramicroscopy, vol. 111, no. 7, pp. 824–827, 2011.
[55]  A. M. Ga?án-Calvo, D. P. DePonte, M. A. Herrada, J. C. H. Spence, U. Weierstall, and R. B. Doak, “Liquid capillary micro/nanojets in free-jet expansion,” Small, vol. 6, no. 7, pp. 822–824, 2010.
[56]  R. G. Sierra, H. Laksmono, J. Kern et al., et al., “Nanoflow electrospinning serial femtosecond crystallography,” Acta Crystallographica D, vol. 68, no. part 11, pp. 1584–1587, 2012.
[57]  H. Y. Park, X. Qiu, E. Rhoades et al., “Achieving uniform mixing in a microfluidic device: hydrodynamic focusing prior to mixing,” Analytical Chemistry, vol. 78, no. 13, pp. 4465–4473, 2006.
[58]  H. S. Carslaw and J. C. Jaeger, Conduction Heat in Solids, Clarendon Press, Oxford, UK, 2nd edition, 1959.
[59]  J. Hajdu, K. R. Acharya, D. I. Stuart et al., “Catalysis in the crystal: synchrotron radiation studies with glycogen phosphorylase b,” EMBO Journal, vol. 6, no. 2, pp. 539–546, 1987.
[60]  S. Geremia, M. Campagnolo, N. Demitri, and L. N. Johnson, “Simulation of diffusion time of small molecules in protein crystals,” Structure, vol. 14, no. 3, pp. 393–400, 2006.
[61]  A. Aquila, M. S. Hunter, R. B. Doak et al., et al., “Time-resolved protein nanocrystallography using an X-ray free-electron laser,” Optics Express, vol. 20, no. 3, pp. 2706–2716, 2012.
[62]  J. M. Holton and K. A. Frankel, “The minimum crystal size needed for a complete diffraction data set,” Acta Crystallographica Section D, vol. 66, no. 4, pp. 393–408, 2010.
[63]  L. Lomb, T. R. M. Barends, S. Kassemeyer, et al., “Radiation damage in protein serial femtosecond crystallography using an X-ray free-electron laser,” Physical Review B, vol. 84, no. 21, Article ID 214111, 2011.
[64]  M. Schmidt, T. Graber, R. Henning, and V. Srajer, “Five-dimensional crystallography,” Acta Crystallographica A, vol. 66, part 2, pp. 198–206, 2010.
[65]  R. Neutze, R. Wouts, D. Van Der Spoel, E. Weckert, and J. Hajdu, “Potential for biomolecular imaging with femtosecond X-ray pulses,” Nature, vol. 406, no. 6797, pp. 752–757, 2000.
[66]  D. Giannakis, P. Schwander, and A. Ourmazd, “The symmetries of image formation by scattering. I. Theoretical framework,” Optics Express, vol. 20, no. 12, pp. 12799–12826, 2012.
[67]  P. Schwander, C. H. Yoon, A. Ourmazd, and D. Giannakis, “The symmetries of image formation by scattering. II. Applications,” Optics Express, vol. 20, no. 12, pp. 12827–12849, 2012.
[68]  R. Fung, V. Shneerson, D. K. Saldin, and A. Ourmazd, “Structure from fleeting illumination of faint spinning objects in flight,” Nature Physics, vol. 5, no. 1, pp. 64–67, 2009.
[69]  M. M. Seibert, T. Ekeberg, F. R. N. C. Maia et al., “Single mimivirus particles intercepted and imaged with an X-ray laser,” Nature, vol. 470, no. 7332, pp. 78–82, 2011.
[70]  D. K. Saldin, V. L. Shneerson, M. R. Howells et al., “Structure of a single particle from scattering by many particles randomly oriented about an axis: toward structure solution without crystallization?” New Journal of Physics, vol. 12, Article ID 035014, 2010.
[71]  D. K. Saldin, H. C. Poon, P. Schwander, M. Uddin, and M. Schmidt, “Reconstructing an icosahedral virus from single-particle diffraction experiments,” Optics Express, vol. 19, no. 18, pp. 17318–17335, 2011.
[72]  R. A. Kirian, K. E. Schmidt, X. Wang, R. B. Doak, and J. C. H. Spence, “Signal, noise, and resolution in correlated fluctuations from snapshot small-angle X-ray scattering,” Physical Review E, vol. 84, no. 1, part 1, Article ID 011921, 2011.
[73]  D. K. Saldin, H. C. Poon, V. L. Shneerson et al., “Beyond small-angle X-ray scattering: exploiting angular correlations,” Physical Review B, vol. 81, no. 17, Article ID 174105, 2010.
[74]  H. C. Poon, M. Schmidt, and D. K. Saldin, “Extraction of fast changes in the structure of a disordered ensemble of photoexcited biomolecules,” Advances on Condensed Matter Physics. In press.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133